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Abstract

We study the effects of a technical intervention in Karachi, Pakistan – converting
bare distribution wires to aerial bundled cables (ABCs) – that was intended to pre-
vent illegal grid connections and improve utility cost recovery. Theft-resistant cables
reduced losses. This occurred primarily through decreases in unbilled consumption,
with the number of formal utility customers and their billed consumption both in-
creasing. Load shedding outages decreased. In areas with these cables installed, con-
sumers have more appliances and higher electricity-related expenditures. Revenue
recovery rose, but consumers’ billing-related complaints also increased.
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1 Introduction

Electricity service quality in developing countries is substantially worse than in devel-

oped countries, and research has demonstrated that poor quality affects both firms (Rud,

2012; Fisher-Vanden, Mansur and Wang, 2015; Allcott, Collard-Wexler and O’Connell,

2016; Fried and Lagakos, 2022) and households (Burlando, 2014; Chakravorty, Pelli and

Ural Marchand, 2014; Carranza and Meeks, 2021; Meeks et al., 2023). Prior literature ar-

gues that poor service quality stems from electricity distribution companies’ inability to

recover the full cost of services delivered due to high subsidies, bill non-payment, and

electricity theft (Burgess et al., 2020). Although previous research addresses two of these

contributors to low cost recovery – subsidies (McRae, 2015b) and bill non-payment (Jack

and Smith, 2020) – little exists on theft and the resulting unbilled consumption.

We study the effects of a technical intervention in Karachi, Pakistan that made dis-

tribution lines theft-resistant and, in doing so, aimed to reduce unbilled consumption.

Unbilled consumption occurs when individuals cannot be excluded from accessing the

infrastructure and its associated services, and transpires through meter tampering, ille-

gal connections that bypass meters, and billing irregularities (with meter readers often

complicit) (see, e.g., Alam et al., 2004; Jamil, 2018; Abdollahi et al., 2020; Savian et al.,

2021). The upgrade that we study consisted of converting bare low voltage distribution

wires to aerial bundled cables (ABCs), which are twisted, insulated cables that prevent

connections that bypass meters.1 This technical solution contrasts with incentive-based

interventions with similar goals of improving utility cost recovery.2

Available for approximately half a century, ABCs are common in Europe, Japan,

South Korea, and parts of the United States and Australia, among other high income

countries (La Salvia, 2006).3 The technology, however, is less common in South Asia and

1Given this conversion was implemented with the specific intent of reducing theft, we use the terms
ABCs and theft-resistant cables interchangeably.

2For example, existing research addresses pricing reforms implemented in developing countries
(McRae, 2015a; McRae and Meeks, 2016; Alberini, Bezhanishvili and Ščasný, 2022; Beyene et al., 2022a).

3Locating distribution lines underground is often optimal, but it is the most expensive option and geo-
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Africa, with South Africa being an exception (La Salvia, 2006). Bare wires, the lower-

cost technology, were historically the default in many developing countries (Agarwal,

Mukherjee and Barna, 2013), but they are susceptible to illegal connections. In the ab-

sence of ABCs, utilities must regularly inspect, detect, and remove illegal connections,

with nothing preventing illegal re-connections thereafter. More recently, utilities in low

and middle income countries such as Brazil, India, Iran, Mexico, and Pakistan have re-

placed bare wires with ABCs specifically to reduce electricity theft (La Salvia, 2006; Agar-

wal, Mukherjee and Barna, 2013; Abdollahi et al., 2020; Regy et al., 2021; NEPRA, 2022).

Theft is a major contributor to losses, which cost electricity utilities an estimated $96

billion per year worldwide (Bellero, 2017). We use the term “losses” to refer to transmis-

sion and distribution (T&D) losses, which comprise two major components. Technical

losses, which are typically below 6%, are expected due to natural dissipation in the dis-

tribution system (Abdollahi et al., 2020). The second component, and this paper’s main

focus, is unbilled consumption.4 High unbilled consumption is the primary reason why

losses are three times greater in low and lower-middle income countries than in high-

income countries (IEA/OECD, 2018).

Karachi Electric (KE), the distribution company serving Karachi, introduced ABCs in

2015 with the goal of making the electricity infrastructure more theft-resistant. This paper

provides causal evidence on the impacts of this supply-side technology on the utility’s fi-

nancial measures and consumer outcomes, which are not obvious ex ante. Even with theft-

resistant cables installed, consumers may use other channels to keep their consumption

unbilled (e.g., manipulating meters), thereby offsetting the effects of the intervention.

Pakistan is a suitable setting for this study due to its high losses and unreliable elec-

graphically infeasible for many distribution companies. Utilities instead use aerial lines, which can be bare
wires or covered conductors. ABCs are a commonly used type of covered conductor. Early ABC installa-
tions in high income countries were often justified on the grounds of safety, because ABCs reduce accidental
human and animal contact, are less prone to puncture by trees, and are less likely to cause forest fires than
bare wires (Murray, 1995; Oliveira et al., 1996; Li, Su and Shen, 2010). Those same physical properties that
make ABCs less likely to be pierced by trees, also guard against illegal connections and therefore reduce
non-technical losses.

4This is also referred to as non-technical losses.
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tricity service. As of FY 2019-2020, Pakistan’s distribution companies reported T&D losses

between 9% and 39% (NEPRA, 2020). KE’s average loss rate of 19.7% (NEPRA, 2020),

hides considerable heterogeneity and very high losses within the utility’s service terri-

tory. Furthermore, Pakistan is in South Asia, the region with the most power outages in

the world (Zhang, 2018). To limit the financial burden associated with their low cost re-

covery, some distribution companies in the region ration electricity (Burgess et al., 2020).

In Karachi during our study period, electricity supply was primarily constrained due to

the high costs of imported fossil fuels required for generation (in conjunction with the

low cost recovery) and not capacity constraints. Locally, the term load shedding is used

to refer to these outages and thus we also utilize this broader terminology.

To estimate the impacts of theft-resistant cables, we use differences in their installa-

tion across Karachi over time. The speed of KE’s conversion process increased in 2018,

when the utility began targeting feeder-lines with high and very high losses. Within a

feeder-line, the installation would begin at one pole-mounted transformer (PMT or sim-

ply transformer from here onward), which typically serves a neighborhood of approxi-

mately 200 customers. The utility then employed a “ring fencing” strategy to minimize

spillovers; once installation occurred at one transformer within a feeder-line, KE then

converted the closest transformers to ensure coverage within a feeder-line.

Our identification strategy is based on the assumption that, conditional on fixed ef-

fects, the roll-out of theft-resistant cables is exogenous. Given that the utility’s roll-out

strategy depended on predetermined feeder-line characteristics, we control for feeder-

line fixed effects and account for the time-invariant characteristics of these different ar-

eas (e.g., community culture, historical losses). Additionally, we control for time vary-

ing changes across KE’s management offices (called integrated business centers, or IBCs)

across the city (e.g., management changes, regional initiatives, budget allocations) with

IBC-by-month fixed effects. Event-study models demonstrate the absence of pre-trends

in our outcome measures. To address any potential bias from the two-way fixed effects
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model with staggered treatment timing (Goodman-Bacon, 2021), we employ recently de-

veloped robust estimators (Callaway and Sant’Anna, 2021; Sun and Abraham, 2021). Fi-

nally, we conduct a battery of robustness checks to alleviate potential additional concerns

(e.g., spillover effects or contemporaneous policies targeting high-loss feeder-lines).

We use a unique combination of datasets, comprising utility data and our own house-

hold survey data. Utility data include information on the timing and location of cable

conversion, as well as monthly distribution losses and revenue recovery for almost 1,900

feeder-lines over three years. Panel data on billing-related outcomes for approximately

3,000 residential utility customers enable us to investigate the mechanisms through which

theft-resistant cables affect outcomes. Lastly, survey data that we collected in fall 2021 for

these 3,000 customers permit us to better understand the effects on consumers.

Our analyses provide key insights on losses and the impacts of a supply-side technol-

ogy designed to abate them. First, the conversion of bare wires to theft-resistant cables

significantly and meaningfully reduced losses by 8.2 percentage points, from the base-

line mean loss rate of 38.7%. These effects on losses persist for at least two years after

installation, indicating that this was not just a short-run effect of removing illegal connec-

tions during the installation process (that individuals are able to reconnect). We interpret

these effects as primarily arising due to reductions in unbilled consumption (i.e., theft), as

additional analyses rule out technical losses as a significant channel driving the results.

Specifically, we find no evidence of loss reduction in low loss feeders that underwent

cable conversion only because they were located close to high loss feeder lines nor do

we observe any additional negative effects of cable conversions on losses in feeders with

characteristics that are indicative of higher technical losses (e.g., higher load). Moreover,

engineering studies on theft-resistant cables from a similarly high loss context (Abdol-

lahi et al., 2020) also support this interpretation that loss reductions came primarily via

decreases in unbilled consumption.

We also find that bill payment significantly increased, but to a lesser and noisier ex-
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tent (than losses) and this effect dissipates over time. This smaller effect on bill payments

is not surprising. The cables prevent illegal connections, but do not provide additional

mechanisms for enforcing bill payment.

The greater the intensity of cable conversion within a feeder-line, the larger the effects

were on both financial measures (losses and bill payment). Furthermore, the technical

intervention had the greatest impacts on unbilled consumption (bill payments) among

the feeder-lines with the highest unbilled consumption (lowest bill payment) prior to the

intervention. Cost-benefit analyses make evident that the cable conversion pays for itself

through these reductions in losses.

Evidence indicates that these financial gains come via two primary channels. First,

the number of formal residential utility customers significantly increased soon after con-

version to theft-resistant cables, suggesting that previously informal consumers learned

relatively quickly that unbilled consumption was no longer feasible and switched to for-

mal, billed connections. Second, among formal customers, conversions led to significant

increases in monthly bills, both the number of units billed (kWh) and the monetary value.

These results – in addition to reductions in indicators of theft and irregular billing and in-

creases in the likelihood of bill payment – suggest that some formal customers previously

used both formal and informal connections. Following conversion to theft-resistant ca-

bles, they shifted all consumption to their formal connection.

Shifting to the effects of theft-resistant cables on consumers, we show that after the

reduction in utility losses, both the hours of load shedding and consumers’ complaints

to the utility decrease.5 However, a more nuanced analysis indicates an increase in com-

plaints related to utility billing errors. We compliment that causal evidence with correla-

tional analyses that uses our cross-sectional survey data and sheds light as to how con-

sumers might experience these effects. Consistent with the reduction in load shedding

5The change in load shedding hours occurs because the utility’s policy assigns load shedding according
to losses. As we describe in detail later, higher loss feeders are allocated more hours of load shedding per
day. So when a feeder has a decrease in losses, the hours of load shedding should fall, per utility policy.
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hours, cross-sectional comparisons of areas with and without the theft-resistant cables

find significantly less load shedding in the former than the latter. These households also

report owning more appliances, using their appliances for more hours per day on aver-

age, and incurring higher electricity expenditures. Lastly, and consistent with the increase

in consumer billing complaints, analyses indicate that those in areas covered by the ca-

bles are more likely to believe that there are bill errors and less likely to believe that bills

accurately reflect their electricity use.

This paper’s main contributions are to the literature on the provision of services in

developing countries. The study provides evidence on a path to mitigate the financial

crises facing utilities in many developing countries through a technical intervention.6 Al-

though existing studies provide evidence on efforts to mitigate high subsidies and inter-

ventions to increase bill payment for water and electricity utilities in developing countries

(e.g., through pricing reforms (McRae, 2015a; McRae and Meeks, 2016; Alberini, Bezhan-

ishvili and Ščasný, 2022; Beyene et al., 2022a), pre-paid meters (Jack and Smith, 2020;

Beyene et al., 2022b), and informational interventions (Szabó and Ujhelyi, 2015)), causal

evidence on interventions to reduce unbilled consumption remains limited.

Moreover, the study fills a fundamental gap in the literature by estimating the ef-

fect of a technological intervention on losses. Our main result – that theft-resistant cables

can reduce unbilled consumption – is generalizable to other developing country settings

where theft is high and the utility has incentives to install the technology, regardless of

the load shedding policies or other regulations.7 Our supplementary result that this inter-

vention leads to less load shedding and thus more power being supplied to treated areas

might not hold more generally, as load shedding policies may differ elsewhere. How-

ever, we note that as any utility’s financial losses decrease there can be dynamic effects

6Given that electricity utilities are commonly publicly owned and operated (or if privately owned, the
government is often a majority stakeholder), we also see this adding to a broader literature on public sector
financing in developing countries (Pomeranz, 2015; Kumler, Verhoogen and Frı́as, 2020; Khan, Khwaja and
Olken, 2016; Carrillo, Pomeranz and Singhal, 2017).

7The extent to which they have the incentive to reduce theft differs across utilities. Not all utilities have
incentives that are aligned with installing the theft-resistant cables.
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enabling utilities to purchase more electricity and increase overall supply.

Second, in addition to the utility-side impacts, this paper provides insights into the

nuanced effects of this technical intervention on consumers. Given the difficulty in both

accessing administrative data and being able to match it with in-depth survey data, stud-

ies analyzing utility interventions from multiple angles remains relatively rare. Combin-

ing utility records – on both utility and consumer outcomes – with the in-depth consumer

survey permits a more comprehensive set of analyses.

Finally, these results show that a purely supply-side technical upgrade offers a partial

way to shift the electricity sector from a bad equilibrium with high theft, low payments,

and poor service delivery (Burgess et al., 2020) to a better equilibrium. However, there

are reasons for caution due to consumer-side issues. Although we find improvements in

both utility finances and service delivery following the technology upgrade, we find no

significant differences in customers’ trust in the utility. In fact, customers in areas with

theft-resistant cables are more likely to believe that the utility makes billing errors. Fur-

ther exploratory analyses indicate that (presumptive) newly formal customers consume

fewer units of electricity than incumbent customers, with a substantial portion below the

cutoff for the bottom tier of the increasing block price. This suggests that the newly for-

mal customers are poorer than the incumbents and that the tariff may not be functioning

as well as intended. Together, these findings suggest that moving to an equilibrium with

greater willingness to pay may require complementary demand-side reforms targeting

bill payment and tariff reform.

The paper proceeds as follows. Section 2 provides background information on elec-

tricity distribution in Karachi. Section 3 provides a framework for conceptualizing the

impacts of theft-resistant cables. Section 4 details the utility data and our household sur-

vey. Section 5 describes the empirical models underpinning our estimations. Section 6

presents results on the intervention’s impacts on utility-level outcomes. Section 7 reports

estimated effects of the intervention on consumers. Section 8 concludes.
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2 Background on Electricity in Pakistan

2.1 Electricity in Pakistan: Overarching Sector Issues

Pakistan’s power sector has long been beset with challenges, frustrating the goals of pro-

viding affordable and reliable electricity (Younas and Ali, 2021). The power sector has un-

dergone major reforms since the early 1990s and is now regulated by the National Electric

Power Regulatory Authority (NEPRA).8 Yet the sector continues to struggle with frequent

outages and financial challenges, particularly high incidences of unbilled consumption

and non-payment of bills. Additionally, tariffs historically were set substantially below

the cost of supplying electricity (Munasinghe, 1984). Together, these challenges mean that

the distribution companies achieve full cost recovery on only a fraction of the units sup-

plied and are trapped in a sub-optimal equilibrium with overburdened infrastructure,

high losses, intermittent load shedding, and growing circular debt.9

Pakistan’s high-cost and largely non-renewable generation mix has economic and en-

vironmental consequences. From an environmental perspective, Pakistan’s generation is

highly polluting. As of June 2021, the share of the installed capacity due to non-renewable

sources stood at close to 70%.10 From the financial perspective, high losses make it dif-

ficult to fund generation, as the majority of fossil fuels used for the country’s electricity

generation are imported. In Appendix A1, we detail how the utilities in Pakistan are fi-

nancially constrained in their ability to purchase fossil fuels for generation and how that

necessitates load shedding.

8Bacon (2019) discusses the various power sector reform initiatives in Pakistan.
9Circular debt refers to chain of receivables that accumulates along the electricity supply chain when

distribution companies are unable to pay fully for the electricity purchased from generation companies.
10Renewable energy (hydroelectricity, wind, solar) in the generation mix was around 30% with 12,062

MW, while the share of non-renewable thermal power plants (gas, oil, coal, and nuclear) was around 70%
with 27,711 MW (NEPRA, 2021b). During fiscal year 2020-21, the share of gas, regasified liquefied natural
gas, residual furnace oil (RFO), coal, and high-speed diesel generation in total thermal generation stood at
20.20%, 35.82%, 11.96%, 31.59%, and 0.45%, respectively. The heavy reliance on thermal generation would
clearly be contributing to the environmental pollution due to the release of CO2 from the burning of fossil
fuel and contamination of waterways due to the waste water discharged by power plants (NEPRA, 2021b).
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2.2 Electricity Distribution in Karachi

The context of this research is the electricity distribution network in Karachi, the largest

and most densely populated city in Pakistan. Karachi Electric, which is a vertically in-

tegrated and privately-owned power utility, is the sole provider of electricity services in

Karachi.11 The utility has a distribution network spanning an area of 6,500 square kilome-

ters, covering 2.5 million residential, commercial, industrial, and agricultural consumers.

As of 2019-2020, the majority of the customers (83%) in Karachi were residential and 52%

of consumption was residential (NEPRA, 2023).

The company’s distribution network is divided into areas covered by local offices

(IBCs), which handle electricity distribution, billing, and collection in their respective

territories. Of the utility’s 30 IBCs, 12 are categorized as high loss with average unbilled

consumption exceeding 30% of the total units sent out. Bill payment rates are below 80%

in these areas, which have a large fraction of lower-income customers residing in semi-

formal and informal settlements. Appendix A1 describes how Karachi Electric allocates

load shedding according to average feeder line losses.

Kundas, informal and unauthorized connections to the main electricity distribution

cables, are a common sight in many Karachi neighborhoods.12 The use of kundas on bare

wires mean that the electricity infrastructure is nonexcludable. KE is well aware that kun-

das are the main source of unbilled consumption. Historically, KE field staff continuously

monitored high loss areas to detect and disconnect kundas and fine perpetrators.13 How-

ever, with a distribution network comprised of bare wires, there is little deterring people

11KE is a publicly listed company with the Government of Pakistan holding 24% ownership and the
remaining shares owned by a consortium of private investors. Although KE was privatized as of 2005, the
other ten distribution companies operating in Pakistan have not been (Bacon, 2019).

12The local distribution infrastructure typically consists of a sub-station (receiving electricity from the
grid station), a 11 Kv feeder-line carrying electricity from the sub-station to a transformer, and low-tension
cables (220-440V) carrying electricity from the transformer to the customers. A kunda is usually hooked on
the low-tension cables originating from the transformer.

13Kunda removal drives are regularly conducted by KE across all high loss areas. Areas with high kunda
usage are identified by meter inspection officers during their field visits. These officers identify and collect
visual evidence on kundas. The IBC staff analyses this evidence and mobilizes removal teams to carry out
kunda removal.
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from re-connecting a kunda immediately after it is disconnected. In many communities,

households access electricity through kundas that are put in place at night and removed

early in the morning to avoid detection. This is particularly common in the hotter seasons,

when households are more likely to use electricity for cooling services.

When a house or business connects via a kunda, it is not necessarily at a zero cost.

In some neighborhoods, informal groups facilitate kunda connections; the customer pays

an upfront cost for the initial kunda and then a monthly fee for continued use. These

informal groups are most common in the neighborhoods in which KE historically did not

have formal service provision. KE has extended the distribution network to serve these

neighborhoods, but a culture of informal connections persists.

The process to get a formal grid connection through any of Pakistan’s distribution

companies, including Karachi Electric, is determined by the regulatory agency (NEPRA,

2021a). The connection charges are typically comprised of the store cost for materials (me-

ter, etc.) and installation charges, which are 8% of material costs. Material costs vary de-

pending on the connected load and the cable length required to reach the new customer’s

premises. In total, residential customer connections cost at least 100 USD.14 According to

KE, this process can take approximately three months or more (from the customer’s ap-

plication submission to the utility completing the connection) and depends on a number

of factors (e.g., whether there is load available at the transformer/feeder, availability of

materials, how quickly the applicants pays the security deposit for connection fees).

2.3 Bare Wires to Aerial Bundled Cables

Efforts to minimize electricity tariffs in low and lower-middle income countries mean

that the quality of infrastructure construction and service provision often diverges from

that which is found in middle and high income settings. In high income countries, low

14This estimate is based on our communication with KE and is for a 15-20 kW connection costing 30,000
PKR. Connection costs increase for higher loads.
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voltage electricity distribution lines are often either buried underground or are comprised

of covered conductors, such as aerial bundled cables (ABCs). Distribution companies in

lower income countries have historically installed the least costly option: bare wires. We

summarize distribution technologies below and provide more detail in Appendix A2.

2.3.1 Distribution System Technologies

Bare distribution lines are prone to storm damage (e.g., falling branches may puncture

them) and therefore outages, safety challenges (e.g., electrical shock, fire risk, acciden-

tal contact with people and animals), as well as environmental concerns (i.e., extensive

tree clearance required to prevent forest fires), and electricity theft via illegal connections

(La Salvia, 2006; Southern California Edison, 2018). Yet, bare wires are still common in

LICs and LMICs (Agarwal, Mukherjee and Barna, 2013), as low tariffs, low bill payment,

and high unbilled consumption often limit distribution companies’ revenue and therefore

their ability to cover such infrastructure costs (International Energy Agency, 2020).

ABCs are not a new technology, but their installation primarily for their theft-resistant

properties is relatively recent. Early installations are documented in high income coun-

tries during the second half of the 20th century. At that time, ABCs were considered rev-

olutionary and hailed as “the biggest step forward in overhead distribution line practice

in 50 years” (Williamson et al., 1989). Installing ABCs is cheaper than burying distri-

bution lines underground, but they cost an estimated 1.4 times more than bare wires.15

Since the 1980s, ABCs have become ubiquitous in many high income countries (La Salvia,

2006), with installations justified by their better personal safety (e.g., reducing accidental

human and animal injury) and greater resistance to external abrasion and tree puncture

(Murray, 1995; Oliveira et al., 1996; Li, Su and Shen, 2010).

With financial problems pervading the electricity sector in many developing coun-

15Analyses comparing the costs of replacing existing distribution lines with either new bare conductors,
new covered conductors such as ABCs, or relocating the conductors underground, the costs were estimated
to be 0.3, 0.43, and 3 million USD per mile, respectively (Southern California Edison, 2018).
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tries, reducing losses is increasingly prioritized and recent literature argues that replacing

basic wires with ABCs is considered a “practical and effective” solution to reducing non-

technical losses (Abdollahi et al., 2020). Due to their intertwined cable design, the tech-

nology makes puncturing lines to connect kundas difficult. In the past 15 years, ABCs

have been installed with the specific purpose of reducing theft, and unbilled consump-

tion more broadly, by utilities in countries such as Brazil, India, Iran, Mexico (La Salvia,

2006; Agarwal, Mukherjee and Barna, 2013; Abdollahi et al., 2020).

Engineering simulation studies indicate the ABCs are highly effective in eliminat-

ing non-technical electricity losses. These studies indicate that ABCs can also reduce

naturally-occurring technical losses. However, given technical losses represent a small

fraction of T&D loss reduction in high loss settings, any reduction in losses due to ABCs

in settings such as ours are expected to be predominantly driven by reductions in unbilled

consumption. For Karachi Electric, the primary goal of ABC conversions was to reduce

theft (as opposed to technical losses), as we discuss in greater detail below.

2.3.2 ABCs in Karachi, Pakistan

In an effort to decrease unbilled consumption, KE launched an initiative to convert bare

wires to ABCs, specifically for their theft-resistant properties. Conversion began in 2015

as a pilot intervention in a small number of transformers and in 2018 it was expanded

to specifically target the high loss IBCs in Karachi. To ensure the conversion did not

divert KE’s labor from on-going regular operations, the utility outsourced the conversion

process. Figure 1 shows the incremental and cumulative installation of theft-resistant

cables between 2014 and 2021, in terms of the number of transformers on which the cables

were installed. Appendix maps (Figure B1) depict an example of the installation spatially

across one IBC over time.

Two factors affected the roll-out of theft-resistant cables in Karachi. First, the roll-

out was determined by KE’s business strategy. Initially, budgets were set by the utility’s
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strategy department and included targets for the number of transformers to be converted.

Since the majority of the cable installation work was outsourced, these budgets were set

according to the execution capacity of outsourced manpower. After 2018, KE adopted

the policy of targeting transformers in feeder-line areas designated as high-loss and very

high-loss based on their historical records. Second, the roll-out of the cables was subject

to resource constraints. KE prioritized installation to meet targets, following the ring-

fencing strategy described earlier.

ABCs were primarily intended to curb unbilled consumption, as opposed to making

the distribution system more robust to weather related damages. For example, the areas

located close to the coast, which are most susceptible to storms and weather damage,

have very low cable conversion rates as these areas were and continue to be designated

as low loss.16 Furthermore, KE’s internal reports show that ABCs were not viewed as a

means to reduce technical losses.

3 Conceptual Framework

In this section, we conceptualize how the installation of theft-resistant cables could benefit

producers (the distribution company), as well as potentially affect customers.

The electricity utility (in this case, KE) distributes electricity to its formal customers.

The utility charges its customer a single fixed per kWh price, Pf , as set by the regulator.17

The customer’s consumption (kWh) is measured via a meter, based upon which the com-

pany bills the customer. As presented in Burgess et al. (2020), there are multiple reasons,

including unbilled consumption, as to why the the utility collects, on average, an amount

per kWh that is lower than the price set by the regulator, Pf . Following Burgess et al.

(2020), we refer to this as an effective price, Pe. The incidence of unbilled consumption

16By the end of our sample period 56% of all transformers in high loss IBCs were converted to ABCs.
The corresponding figure is 0.2% for the rest of Karachi.

17We assume a single per unit price for simplicity, without loss of generality.
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varies across feeder-lines. Given the high incidence of unbilled consumption, we know

that Pe ≪ Pf and this contributes to the utility’s budgetary constraints.

The budget constraints affect electricity supply and necessitate electricity rationing.

To do so, KE categorizes feeder-lines as high, medium, or low loss, with high loss areas de-

fined as those where KE has the lowest levels of cost recovery. KE then varies the amount

of load shedding across high and medium loss areas, with feeder-lines with higher losses

having greater rationing (lower quantity supplied to the feeder-line, with more hours of

load shedding). Feeder-lines designated as low loss have no load shedding.

Theft-resistant cables have the potential to make electricity infrastructure excludable,

by limiting the feasibility of kundas and thereby shifting their users to formal connections.

If they do prevent kundas, then we expect KE to be better off, as this would decrease the

difference, on average, between Pf and Pe. If kundas are prevented, we expect to see an

increase in the number of formal consumers and a reduction in unbilled consumption.

Although the stated objective of this intervention – and the main focus of our study

– is improvement in the utility’s finances, the intervention will also affect the utility’s cus-

tomers. There are multiple ways that theft-resistant cables may affect consumers. First, an

increase in the effective price of electricity would intuitively make customers worse off;

if their consumption of electricity services remains constant, their electricity expenditures

would increase, potentially affecting non-electricity expenditures. However, KE’s load

shedding policy may result in a reduction of rationing as losses fall. This would benefit

customers by allowing them to buy appliances and consume more of their services.18 Fur-

ther, a reduction in the use of kundas may improve the quality of electricity services (e.g.

lower fluctuations and outages due to damage caused by kundas), an effect that would

not be measured by simple changes in surplus. We therefore leverage both KE provided

18In Appendix Section E we present a simple model of consumer surplus and report results from ex-
ploratory analysis of the effects of the theft-resistant cables on consumer surplus. While acknowledging
concerns about the validity of estimating surplus as a relevant welfare measure in the presence of theft,
the exercise helps highlight not only the restrictive assumptions required for such analysis, but also the
potential for both positive and negative effects of the change on consumers.
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data and data we collected from a cross section of the utility’s consumers to determine

the direction of these effects.

4 Data

The analyses utilize data from two sources. First, through a non-disclosure agreement,

the utility shared extensive data at the feeder-line, transformer, and consumer levels. In

addition, we collected survey data for a sample of utility customers.

4.1 Utility Feeder-line and Cable Conversion Data

We assembled a comprehensive and unique dataset including estimates of feeder-level

losses, percentage of billed amount paid, utility claims, consumer complaints, consumer

numbers and date of cable conversions of transformers from KE.19 Further details of the

utility datasets are as follows:

Utility Financial Indicators. There are two variables that are primary indicators of

utility financial health: losses and revenue recovery, respectively. The data on feeder-level

monthly losses and revenue recovery cover all feeder-lines in Karachi from January 2018

to October 2020.

Losses are measured as the difference between units sent out and units billed and

then divided by units sent out. Losses are therefore the proportion of the electricity sent

out that is not billed. Note that this is in essence an estimate of total T&D losses, as there

is no way to distinguish between unbilled consumption and technical losses.

Revenue recovery is defined as the ratio of net credit to billing. In other words, it is

proportion of billed electricity consumption that is actually paid.

Consumer Complaints. We collect data on consumer complaints, which are tick-

ets submitted by KE customers regarding issues such as billing, technical problems, and

19These outcomes obtained from utility’s administrative records are measured at the feeder-line level.
Transformer level data on these outcomes are not available during the period of our study.
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service concerns for the contract account, from January 2018 to June 2021. For each com-

plaint, we observe information on the topic, timing, and the corresponding feeder-line.

The data are then aggregated to the feeder level on a monthly basis.

Consumer Number. For each feeder-line in Karachi, we collect monthly data on the

number of active consumers in each category, including agricultural, bulk, commercial,

industry, and residential consumers, between January 2018 and March 2021.

Theft-Resistant Cable Installation. KE provided the dates when cables were up-

graded in each transformer. We observe the installation record through January 2021. To

match these data with feeder-level monthly variables, we create two measures for cable

installation. First, we define a binary indicator for whether a feeder-line has at least one

transformer where cables were upgraded. Second, we calculate the ratio of transform-

ers with theft-resistant cables installed relative to the total number of transformers in a

feeder-line.

Contemporaneous Initiatives. We collect data from KE on the other utility initiatives

that had the potential to affect the financial outcomes that we study (losses and revenue

recovery) and that overlapped in timing with the study period. These data are further

detailed in Section 6.1.2, where we explain the robustness checks.

4.1.1 Feeder Line Summary Statistics

Our final monthly dataset covers 1,888 feeder lines in Karachi. We calculate baseline sum-

mary statistics for sub-groups of feeders (Appendix Table C1). Of these, 1,509 feeder lines

are not treated with the theft-resistant cables before the end of our study period (“never

ABC”), whereas 194 feeders are treated during our study period (“ABC treated”).20 We

present the means and standard deviations of baseline characteristics for both groups. We

can further decompose the treated group into those feeders treated earlier (“early ABCs”)

and those treated later (“late ABCs”) in the study period. We compare the early versus

20In order to capture baseline characteristics for the feeder lines that are treated in our study period, we
omit from these calculations feeders that were treated during or before January 2018.
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late treated feeder lines on a number of baseline characteristics, which is helpful for both

our empirical strategy (described in Section 5) and for interpreting the estimated effects.

We can also compare the treated feeders with the never treated feeders. As expected,

given treatment was determined using certain baseline characteristics (i.e., losses), the

feeder lines without theft-resistant cables installed are statistically significantly different

from the treated feeders in multiple ways.

4.2 Utility Residential Consumer Data

For a subset of residential customers, which are also the households surveyed as de-

scribed in the following sub-section, we obtain the corresponding consumer-level data

on billing and payment behaviors from KE. The sample covers the period between June

2018 and August 2021. In the data, we observe information on monthly billed units of

electricity (both the kWh and the monetary amount), the amount and date of bill pay-

ment, total monetary amount due to KE, and the billing category mode (BCM).21 These

data allow us to check whether a customer paid their bill in a billing cycle or not.

4.3 Household Survey Data

In October and November 2021, we surveyed approximately 3,000 residential customers

across 150 transformers (Ahmad et al., 2024). To do so, we randomly selected house-

holds from the utility’s roster of consumers in a multiple-step process. We restricted the

sampling to high-loss feeders within eight of KE’s regional offices (IBCs). Within these

feeder-lines, we restricted to transformers with a minimum of 80 customers and a maxi-

mum of 500 customers, to both ensure we have sufficient households to allow for replace-

21The BCM variable allows us to observe whether billing occurred in a normal manner or whether there
are irregular bills. If a consumer has a normal BCM, it means that the meter functioned properly and there
were no errors in billing. There will be irregular bills if the meter stops working or becomes faulty, or if
there are other errors in recording units or calculating bills. Irregular bills also occur when there is a case
of theft or kunda detection by KE. According to the BCM classifications, we are able to identify customers
with irregular bills or those alleged by the utility to have engaged in theft in a month.
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ment and to avoid outlier transformers with particularly large numbers of customers.

This leaves more than 1,500 transformers from which to select. We randomly selected 150

transformers, ensuring that transformers both with and without theft-resistant cables are

represented in the list. Selected transformers serve, on average, 202 residential customers

each. Within transformers, we limited our sample to residential customers with active

accounts and then randomly selected 20 customers per transformer to survey.

The questionnaire collects information on basic household characteristics, demo-

graphics, and other outcomes related to electricity consumption. We collected data on

appliance ownership and use, as well as household expenditures (both electricity and

non-electricity related). Questions also cover household perceptions about the level of

theft and payment practices in their neighborhood, as well as respondents’ beliefs about

the utility, electricity service quality (both load shedding and voltage fluctuations), tariffs,

billing, and payment practices.

From these survey data, we learn about the households in this setting and their gen-

eral demographic information (Appendix Table C2). Households, on average, consist

of seven individuals: four adults and three children. The majority of those surveyed

(79%) are owners of the home, rather than renters. The houses have three rooms, with

approximately three-fourths are pucca (i.e. constructed of bricks and cement) and one-

fourth made of more rudimentary and temporary materials (katcha). Only 5% of sur-

veyed households report owning land.

In terms of their electricity-related characteristics (Appendix Table C3), the surveyed

households report summer and winter monthly electricity bills of 5,635 Pakistani rupees

(PKR) and 3,886 PKR, respectively. Summer is not only the time of peak electricity bills;

summer also has greater outages or load shedding (7.6 hours per day) than winter (5.6

hours per day). These households own approximately seven appliances, on average,

which typically include water pumps and refrigerators. Almost no households in the

sample report owning an air conditioner.
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5 Empirical Strategy

5.1 Losses and Bill Payment

To estimate the impact of conversion to theft-resistant cables, our research design lever-

ages differences over time and across Karachi in the cable conversion process. The adop-

tion of theft-resistant cables follows a staggered process, the timing of which mainly de-

pends on KE’s business strategy. Since the roll-out of the cables creates variations across

feeder-lines and over time, we employ a staggered DID approach to identify the causal

effect of the conversion on feeder-level losses and bill payment.

For feeder-line i of IBC region j in month t, we estimate the following regression

model throughout our main analysis:

yijt = βABCit + αi + δjt + εijt. (1)

The outcome variable includes losses and bill payment (measured using variables losses

and revenue recovery, both in percentage points). The variable of key interest, ABCit, is

a binary indicator for whether a feeder-line i already had at least one transformer with

theft-resistant cables installed in month t.

We add a rich set of fixed effects to control for unobservable determinants. We in-

clude a feeder fixed effect αi to capture feeder-level time-invariant unobservable factors

that may affect both the outcome and cable conversion, such as the baseline feeder-line

categories. We also control for IBC-specific time fixed effects δjt to account for regional

policy shocks or potentially differential time trends across IBCs, such as changes in IBC

management, allocation of budgets, regional initiatives, or revision of targets. The stan-

dard errors are clustered at the feeder-line level.

In an alternative model specification, we explore the intensity impact of the theft-

resistant cables by replacing the ABC indicator with the ABC ratio, which, as previously
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defined, is the ratio of the transformers within a feeder-line that have been converted to

theft-resistant cables.

We adopt the standard two-way fixed effects model as the main specification for our

primary outcome variable (losses). We argue this is appropriate because, for multiple rea-

sons, we do not expect the treatment effects on losses to vary by cohort – a primary con-

cern when using the two way fixed effects model. First, our feeder line summary statis-

tics (Appendix Table C1) showed no baseline differences in losses between the “early”

and “late” treated cohorts. Second, it is unlikely that the later treated feeder lines were

changing their loss-related behaviors in anticipation of treatment (e.g. customers would

not give up their kundas any earlier than necessary). Third, our event study estimates

for losses can capture the evolution of treatment effect over time. Moreover, we can

present the robustness of our loss-related results to alternative estimators used in stag-

gered difference-in-differences models proposed by Callaway and Sant’Anna (2021) and

Sun and Abraham (2021).

5.2 Validity of Identification Strategy

Our identification strategy takes advantage of variations in outcome measures specific

to feeder-lines with theft-resistant cables installed relative to those feeder-lines without

cables installed, and in periods before and after the conversion. Based on KE’s busi-

ness strategy, the roll-out of the cable conversion depends on predetermined feeder-line

characteristics in terms of loss categories, resource constraints, and local resistance. By

including our fixed effects, the model can account for a range of omitted variables that

could otherwise bias the estimates. After adjustment for these fixed effects, the roll-out

time is conditionally independent of unobservable factors that may affect unbilled con-

sumption and bill payment. We discuss the identifying assumptions and potential threats

in the following paragraphs and provide more details on efforts to address these concerns

in Section 6.1.2.
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Parallel Trends Assumption. The DID approach requires parallel trends in the out-

come variable between the treatment group and the control group in the absence of the

cable conversion. To provide evidence that the assumption holds prior to treatment, we

estimate the dynamics of unbilled consumption and bill payment using the event-study

framework. Specifically, we include leads and lags of the cable conversion indicator in

the baseline regression to trace out the month-by-month effects:

Yijt = ∑
−15≤k≤21

k ̸=−1

βk1[t − τi = k] + αi + δjt + εijt. (2)

The dummy variables, 1[t − τi = k], jointly represent the theft-resistant cable conversion

events. Specifically, τi denotes the first month when feeder-line i started having theft-

resistant cables at its transformers, and k measures the gap between the current month

and the initial deployment month τj. A negative k represents the pre-conversion month

while a positive k represents the post-conversion month. Controlling for leads allows

us to examine the pre-treatment effects as a test for parallel trends. Controlling for lags

enables us to trace the effects in the periods after the initial conversion. Note that the

dummy for k = −1 is omitted from Equation (2) so that the estimated effects are relative

to one month prior to the conversion. If the results show that the estimated coefficients

for the leads of the theft-resistant cable conversion dummy are small in magnitude and

statistically indistinguishable from zero, then there is no evidence of meaningfully differ-

ential trends in losses and bill payment in advance of the conversion. This would provide

support for the parallel trends assumption.

Addressing Feeder-Level Confounding Factors. With the feeder-line and IBC-by-

year fixed effects, we are able to account for a rich set of time-invariant feeder-level

characteristics or IBC-specific shocks that might confound identification. The remain-

ing concern stems from time-varying feeder-level changes. We address this issue as fol-

lows. First, we include additional fixed effects, such as IBC-by-loss-category-by-month
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or feeder-by-calendar-month fixed effects, to capture differential seasonal patterns or loss

mitigation efforts across feeder-lines. Second, to address the concern that theft-resistant

cable installation might be affected by the utility’s anticipation of feeder-level changes,

we conduct robustness checks focusing on feeder-lines that are followers of the initial ca-

ble conversions according to KE’s “ring-fencing” strategy and therefore their conversion

schedules are likely to be exogenous. We note that we are unable to cleanly separate the

target transformers from the “ring-fenced” transformers as this information is not avail-

able in the roll-out schedule.22 However, we perform the robustness check discussed here

on the basis of conversion timing. Finally, we also obtain data on contemporaneous initia-

tives that were launched by the utility at some point overlapping with our study period

and that might either affect theft or bill payments, and check the robustness of our results

after accounting for these initiatives.

Stable Unit Treatment Value Assumption (SUTVA). Another identifying assump-

tion is that there are no spillover effects on feeder-lines in our control group. Specifically

in our setting, it means that the cable conversion of one feeder-line does not affect other

feeder-lines that have not yet been converted. Since the cable conversion work was con-

ducted by an outside vendor, we are able to exclude the possibility that the utility’s labor

force was diverted from untreated areas. Given the utility employs load shedding, one

might expect that as losses and thus load shedding decline for the converted feeder lines,

untreated feeder lines experience more load shedding. However, according to the util-

ity’s official policy, load shedding in Karachi is assigned at the feeder-line level and de-

termined based on the individual feeder-line’s loss levels (Appendix A1). Furthermore,

as part of its annual load planning exercise, the utility accounted for potential changes in

demand following the cable conversions, and adjusted its supply accordingly (through

generation and purchases). Lastly, we note that the treated area of study in this paper is

22Unfortunately, we are unable to leverage the “ring fencing” strategy for our main specification, as we
do not know exactly which transformers were targeted versus “ring fenced.” Additionally, as our outcomes
are at the feeder-line level, aggregating the “ring fencing” strategy to the feeder-line level would potentially
create measurement errors (i.e., one feeder line could have both targeted and “ring fenced” transformers).
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relatively small compared to the entire distribution network (194 feeder lines out of the

total 1,888 feeders). For these reasons, load shedding in untreated areas is unlikely to be

affected systematically by the treatment and, if it is, we expect it to be quite small.

Lastly, one may be concerned that households located in converted areas instead con-

nect their kundas to nearby untreated feeder-lines. This concern is alleviated due to KE’s

“ring fencing” strategy – once the theft-resistant cable installation starts at a transformer,

the company will convert other transformers in neighboring regions. To further address

this issue, we also conduct robustness checks by excluding feeder-line areas that are very

close to each other from our sample.

5.3 Consumer Bill Analyses

To complement the analysis of the utility-level impacts, we investigate the consumer-

level response to theft-resistant cables using panel data on residential customers’ billing-

related outcomes. We conduct both event studies and DID regression analyses of the ca-

bles’ impacts on residential customers. For residential consumer i served by transformer

j in month t, we estimate the following regression model:

yijt = βABCjt + αi + δt + γjτ(t) + εijt. (3)

The outcome variables include different consumer-level measures on billed electricity

consumption, payment behavior, and theft. The variable of key interest, ABCjt, is a binary

indicator for whether transformer j already has theft-resistant cables installed in month t.

We add consumer fixed effects (αi), month fixed effects δt, and transformer by month-of-

year fixed effects γjτ(t) to capture unobservable factors. Standard errors are clustered at

the transformer level.
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6 Effects of Theft-Resistant Cables on the Utility

In this section, we present results from our baseline model that suggest that this technical

intervention resulted in a reduction in losses and an increase in bill payments. To under-

stand the channels through which these impacts occurred, we also investigate whether

the cable installation affected technical losses, the number of utility customers, or cus-

tomer bill payment behaviors. The section ends with cost-benefit analyses to illustrate

how quickly the investment pays for itself.

6.1 Losses and Bill Payment

6.1.1 Main Results

We investigate the effects of the cable installation through both event studies and regres-

sion analyses. The event studies in Figure 2 estimate the difference between the feeders

that were “treated” via installation of theft-resistant cables on at least one transformer

and those that were not (the “untreated”), controlling for both IBC-by-month and feeder

fixed effects.

These event studies provide two key results. First, they show that the estimated coef-

ficients for the leads of the theft-resistant cable conversion dummy are small in magnitude

and statistically indistinguishable from zero. Hence, there is no evidence of meaningfully

differential trends in losses and bill payment in advance of the conversion, which pro-

vides support for the parallel trends assumption. Second, these results illustrate a signifi-

cant negative effect on losses and a positive effect on bill payment from the theft-resistant

cable installation. These effects persist for the duration of the study period. For losses

we observe that the effect fully materializes within six months likely reflecting the time

to fully convert all transformers within a feeder line and for consumers to obtain formal

connections. For the latter, recall that getting a new connection is costly, and so the tim-

ing may be affected by consumers’ financial constraints. Revenue recovery impacts are
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noisier and dissipate towards the end of the sample period. We explore this further in the

robustness checks (Section 6.1.2).

We further investigate this relationship through DID analysis, as depicted in Equa-

tion 1. Results showing the estimated impact of theft-resistant cables – using the indica-

tor for cable installation on at least one transformer within a feeder-line – on losses are

in Table 1, Panel A. Results from regressions using our other measure of treatment – the

intensity of cable installation within a feeder – are presented in Panel B of Table 1. These

analyses are performed using both monthly and quarterly losses and revenue recovery

data as outcome measures. All regressions include feeder fixed effects and some form of

IBC-time fixed effect, depending on whether the analyses are using monthly or quarterly

data.23

The results in both panels tell a consistent story. Theft-resistant cable installation,

whether measured as a binary indicator or as a treatment intensity, led to significant re-

ductions in losses and increases in bill recovery. In Panel A, the estimates in columns 1

and 3 suggest that losses decreased by 6.2 to 8.2 percentage points in feeders with theft-

resistant cables. This reduction can be compared to the baseline mean loss rate in the

treated feeders, which was 38.7% (Appendix Table C1, column 2).24 Similarly, the esti-

mates in columns 2 and 4 suggest that bill payment was improved by 5 to 5.2 percentage

points, which is an increase from the 65% baseline average revenue recovery in these feed-

ers. Panel B provides evidence that fully replacing all bare wires within a feeder-line with

theft-resistant cables leads to even larger improvements in losses and bill payment. These

results are also consistent with robustness checks in which we omit the first six months

after a feeder line is converted and find estimated effects that are larger in magnitude

than the main estimates (Appendix Table C7, Panel E).25

23The results are robust to using alternative clustering approaches as shown in Table C4.
24We note that the estimated effects are identified off of the conversion of high loss feeders and therefore

we should not expect the same effects if the same technology were installed in low loss feeders.
25Supplemental evidence, however, indicates non-linearities in the effect of cable installation intensity.

Specifically, we find diminishing returns from theft-resistant cables on bill recovery (Appendix Table C5).
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Additionally, we investigate whether the theft-resistant cables have heterogeneous

effects, depending on the severity of the baseline losses and bill payment problems. We

classify the initial losses or bill payment rates (the monthly average losses and revenue

recovery rate variables over January 2018 and June 2018) of the feeder-line into three

categories by tertile: low, medium, and high. The ABC indicator is then interacted with

binary indicators for those categories. We find that losses decreased more in the feeders

that had higher levels of losses at baseline (Appendix Table C6). Similarly, bill payment

increased more among the feeders with medium and low levels of baseline payments.

6.1.2 Robustness Checks

The results in Table 1 are robust to a number of checks, which are presented in the Ap-

pendix (Tables C7, C8, C9, C10, and C11) and summarized here.26

“Ring-Fencing” and the Roll-out of ABC Conversion. We leverage the utility com-

pany’s “ring-fencing” strategy to address the concern that the cable roll-out is correlated

with time-varying feeder-line characteristics, such as anticipated reduction in theft or bill

payments. As we previously explained, KE adopted the ”ring fencing” strategy – once

theft-resistant cable conversion starts, the company tries to cover neighboring regions –

to prevent negative spillovers. One might worry about the endogeneity of theft-resistant

cable conversion for the feeder-lines that started this process earlier. Their neighbor-

ing feeder-lines, however, are likely to be converted due to the “ring-fencing” strategy

and therefore the conversion schedule can be considered exogenous. With that in mind,

we conduct robustness checks by restricting our sample only to the followers of theft-

resistant cable conversion (i.e., feeder-lines that did not have one of these “first converted”

transformers). Specifically, we first create a 1km buffer zone around each feeder-line area.

Next, for all the nearby feeder-lines that overlap with this buffer zone, we identify the ear-

26We also conduct additional placebo tests by shuffling ABC installation across high-loss feeder lines.
As Figure C2 shows, the estimates based on the actual ABC installation status are outside of the 99% range
of the empirical distribution from these pseudo ABC status.
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liest cable conversion date among them. Then, we drop the feeder-line areas if they are

among the earliest to have the cables installed. This process is repeated across all feeder-

line areas and we end up having only the followers of theft-resistant cable conversion in

our sample. With this restricted sample, we re-estimate our baseline model. In addition,

we also conduct more robustness checks by dropping the high-loss feeder-lines as well

since they are more likely to be strategically targeted by the utility company during the

conversion process. Our conclusions still hold (Panel A of Appendix Table C7).

Addressing Potential Spillovers. There are several types of potential spillovers,

which we address here. First, if there are changes in load shedding in response to the

theft-resistant cables installed, those changes must not affect untreated feeder-lines. In

Karachi, load shedding is assigned at the feeder-line level based on the unbilled consump-

tion and bill payment rates at that feeder-line. The algorithm used by the utility to allocate

load shedding is depicted in Appendix A1. Low loss feeders are assigned 0 hours of load

shedding per day and the hours of load shedding per day are positive and increasing for

medium (3 hours), high (6 hours), and very high (7.5) loss feeders (Appendix Table A1).

These load shedding allocations are assigned not due to generation capacity constraints

(as described in Appendix A1, the generators are operating at below capacity), but due

to the costs of purchasing fuel for generation relative to the costs covered by customers’

payments. So, if one feeder has an increase or decrease in load shedding, that does not af-

fect load shedding in another feeder line. This process by which Karachi Electric assigns

load shedding at the feeder-line level and the fact that our analyses are using feeder-line

level data also mitigate concerns regarding this potential SUTVA violation. In summary,

although we cannot say that there are absolutely no spillovers of this kind in our study,

we argue that any such spillover is arguably sufficiently small that it is inconsequential

to our findings.

Second, the process of installing cables on some feeder-lines must not divert re-

sources away from other feeder-lines, thereby affecting their outcomes. Given the mag-
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nitude of this task of replacing bare wires with the theft-resistant cables, the utility out-

sourced the vast majority of this work. With this work conducted by an outside vendor,

the utility’s labor resources were not diverted from untreated feeder-lines.

Third, theft must not spill over into untreated feeders by households located in neigh-

boring areas with treated feeder-lines. In other words, households that can no longer pil-

fer from their closest feeder-line due to theft-resistant cable installation must not connect

a kunda to a nearby feeder-line without such cables installed. This is mostly likely to oc-

cur in feeder-lines that are very close to each other. The concern on spatial spillovers can

be mitigated by KE’s adoption of the “ring-fencing” strategy when doing the conversion.

To further address this issue, we re-estimate the baseline model excluding from our sam-

ple feeder-lines that are very close to each other. Specifically, we identify the center point

of each feeder-line area by averaging the GPS coordinates of its transformers, and calcu-

late the distance between each pair of feeder-line areas. We then re-estimate the baseline

model by dropping the feeder-lines that have at least one nearby feeder-line within a 100

m, 300 m, or 500 m buffer zone. Results are in the appendix (Appendix Table C7 Panel B).

Additionally, we control for the theft-resistant cable status of neighboring feeder-lines, by

adding an indicator for whether there are conversions at transformers from other feeder-

lines located within 100 m, 300 m, or 500 m distances (Appendix Table C7 Panel C). Both

approaches yield similar results and alleviate concerns regarding such spillovers.

Heterogeneity-Robust DID Estimator. Recent literature shows the potential estima-

tion bias of the two-way fixed effects estimator with varied treatment timing (De Chaise-

martin and d’Haultfoeuille, 2020; Goodman-Bacon, 2021; Callaway and Sant’Anna, 2021;

Sun and Abraham, 2021). Under a setting with staggered treatment timing and heteroge-

neous treatment effects, the bias arises from the comparison between later treated units

and earlier treated units that instead serve as the control. The event-study model usu-

ally generates reliable estimates as it breaks down treatment effects in different periods.

To further mitigate this concern, we employ a doubly-robust DID estimator proposed by
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Callaway and Sant’Anna (2021). This estimator only compares treated units with never-

treated ones serving as controls, hence excluding all the “bad” comparisons. In the ap-

pendix (Panel D of Appendix Table C7), we report the aggregated estimates of the average

treatment effect on the treated for all timing groups across all periods.

The coefficient estimates for losses are very similar to our main estimates, suggest-

ing that heterogeneous treatment effects depending on the timing of the treatment are

not a concern. The estimates for revenue recovery are smaller than our main estimates.

This difference in magnitude is likely due to the significant baseline differences in rev-

enue recovery for earlier versus later treated cohorts, possibly resulting in heterogeneous

treatment effects. As further analysis, we also estimate event-study models following the

approach suggested by Callaway and Sant’Anna (2021) and Sun and Abraham (2021).

Results from these alternative estimators exhibit similar patterns to our main results (Ap-

pendix Figure C1). The sustained effects on losses suggest a permanent reduction in

theft and limited adaptation to the technical intervention via other channels that can be

used for stealing such as meter tampering.27 However, we do not observe a sustained im-

provement in revenue recovery. This is likely because the cables were intended to prevent

theft, but they do not change the tools available to the utility to enforce bill payment. The

initial improvements in revenue recovery might reflect customers’ fear or belief that en-

forcement of bill payment may increase with the cables, and the dissipation of effects over

time may reflect customers updating their beliefs as they experience additional months

of billing post-cable installation.

Contemporaneous Initiatives. Our estimated impact of the cable conversion might

be confounded by feeder-line level contemporaneous initiatives. While national or re-

gional policies are common shocks to different feeder-lines and therefore will be absorbed

by the IBC-by-month fixed effects, feeder-level time-variant factors still present a chal-

lenge. First, there might be contemporary efforts that only target high-loss feeder-lines

27In additional analyses (not shown), we find no significant impact of cable conversions on claims filed
by the utility against customers for damage to low tension cables, service cables, or meters.
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within IBCs. Second, seasonal patterns might differ across feeder-lines. For example,

the utility might spend more effort on maintenance during peak seasons, and mainte-

nance might be more frequent for particular feeder-lines. To mitigate these concerns, we

include IBC-by-loss-category-by-month or feeder-by-calendar-month fixed effects to cap-

ture feeder-level policies within each IBC. The results are similar to our baseline estimates

(Panel F of Appendix Table C7).

Additionally, we use data on the timing and location of specific contemporaneous

initiatives that may affect losses and were carried out by the utility during times that

overlap with the study period. We examine the robustness of our of main results to these

initiatives, as described below.

Customer facilitation camps. The utility periodically conducted “camps” in the com-

munity with overall intent of increasing goodwill towards the utility. These camps gave

people the opportunity to apply for new connections and pay their outstanding bills, and

at times also offered free medical services.28 Using data on the location of these camps, we

perform two robustness checks. First, we drop feeders if they have a transformer within

a specified distance of camp location (using 300 meter or 500 meter buffers). Second, we

create a series of indicators that equal one if a feeder line has a transformer located within

300 or 500 meters, respectively, of a camp location. We then interact those indicators with

our ABC treatment indicator and include those in a series of regressions. In both these

checks our main results hold (Panels A and B of Appendix Table C8).

Meter Replacements. Using utility-provided data on the location and timing of efforts

to replace old and faulty meters, we explore the robustness of our results to the utility’s

meter replacement drives that were happening contemporaneously with ABC conver-

sions during our study period (Appendix Table C9 and C10). During these drives old and

faulty meters were replaced with new meters. Importantly, the new meters were not tech-

nologically different from the meters that they were replacing; for example, they were not

28The utility conducted a total of 170 customer facilitation camps between 2018-2021. The breakup by
year was: 11 (2018), 42 (2019), 54 (2020), and 63 (2021).
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equipped with smart meter or automatic meter reading capabilities.29 We use the start

date of the meter replacements in a given transformer to identify the earliest month in

which a feeder line started having any old and faulty meters replaced. For feeder lines

undergoing meter replacements, we restrict our sample to months prior to the first month

in which meter replacements were initiated (columns 1 and 2 of Appendix Table C9). We

can drop these feeder lines altogether (columns 3 and 4). Or we can add an indicator for

meter replacement as a control and also include its interaction with the treatment variable

(columns 5 to 8). These additional results suggest that meter replacements are not driving

the estimated effect of the theft-resistant cables on losses or revenue recovery. The effect

of cable conversion, when combined with meter replacement, on losses is negative which

suggests that meter replacement likely curtailed the use of meter tampering as a means to

steal electricity. However, there is no additional effect of meter replacement on revenue

recovery. Additionally, we estimate the effect of meter replacements alone on losses and

revenue recovery and find that meter replacements on their own are not affecting these

outcomes significantly either in the period before the cables were installed (pre-ABC) or

the period after their installation (post-ABC) (Appendix Table C10).

Project “Sarbulandi.” KE instituted a multi-pronged project that encompassed several

efforts designed by their regional office (IBCs) to curb theft, improve recoveries and build

both customer and employee goodwill. We have described this project in detail in a sep-

arate qualitative paper (Ahmad et al., 2021), and summarize it and related robustness

checks briefly here. Following the conversion to theft resistant cables, further initiatives

such as customer facilitation camps (discussed above) and employee incentives schemes

(tied to revenue targets) were carried out to improve bill payments. This effort was de-

centralized and management in regional offices (IBCs) was responsible for designing and

implementing these initiatives. While our checks for customer facilitation camps and

29Conversations with KE indicate that meter replacement was conducted only on an “as-needed” basis
(i.e., when broken or faulty meters were identified during the cable conversion process) for the duration of
our study. KE did indicate that more recently, meter replacement had been bundled into the ABC infras-
tructural upgrades as they felt it was more cost-effective in the long-run.
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meter replacement above help control for the two major initiatives within Project Sarbu-

landi, we also exploit the difference in timing of Project Sarbulandi across the twelve high

loss IBCs to perform a further robustness check on the confounding effect of unobserved

contemporaneous initiatives carried out under the project. In the first phase of Project Sar-

bulandi, which became operational in November 2019, six of the twelve high loss IBCs

were selected by KE management to receive these initiatives. The remaining six became

eligible in phase 2, which was delayed due to COVID-19 and did not become operational

during our sample period.

We find that our main results are robust to all possible exclusions (Appendix Table

C11). The size of the treatment effect on losses is very similar and almost identical when

looking at treatment effects on phase 1 and phase 2 feeders separately, which suggests

that the effect of theft resistant cables (a technical intervention) in reducing losses is sim-

ilar across these groups despite the occurrence of additional initiatives in phase 1 IBCs.

The size of the treatment effect on revenue recovery is smaller without phase 1 feeders

(especially when we exclude phase 1 feeders completely) but still significant.

6.2 Mechanisms for Utility Effects

We examine the mechanisms through which loss reduction occurred. First, we assess

whether the observed effects on losses reflect a reduction in technical losses. After our

analyses indicate that technical losses are not a significant channel (Section 6.2.1), we in-

terpret the changes in losses to be driven by reductions in unbilled consumption. We

next examine the potential channels through which unbilled consumption fell and find

evidence of both an increase in the number of formal customers (Section 6.2.2) and an in-

crease in the billed units consumed by formal customers (Section 6.2.3). These results are

indicative of cables causing both previously fully and partially informal consumers (i.e.,

those that were using both kundas and formal connections) to shift to formal connections.
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6.2.1 Effect of Theft-Resistant Cables on Technical Losses

Are the observed effects explained by a reduction in technical losses? Although data

limitations make fully disentangling technical losses from overall T&D losses impossible,

we present several pieces of evidence that strongly suggest that reductions in technical

losses are not driving the observed effects on losses.

We first estimate the effects of cables on losses in feeder lines that had low losses

at baseline. As explained in the background information, KE targeted the installation of

theft-resistant cables to feeder lines that were designated as high-loss and very high-loss

based on their historical records. As a result of that policy, we expect that most of the

feeder lines that were converted to cables will be high loss. However, due to the “ring-

fencing” strategy, some low loss feeder lines were converted simply because they were

located close to high loss feeders that were converted. Employing these treated lower loss

feeders here, we estimate the reduction in technical losses from the cables.

Results from these tests using low-theft feeders are in the first three columns of Table

2. In column 1, we restrict to the sub sample of feeder lines designated as low loss by KE

at baseline, which the utility defined as those with past annual aggregated losses below

25%. This is a relatively broad classification and it likely includes some areas where theft

does occur. Therefore, in column 2, we further restrict the sample to feeder lines with

baseline losses below 10%, which are even less likely to have much theft. In column 3,

we restrict to a subsample of feeders that serve industrial or strategic customers (e.g.,

hospitals, military, and police) and therefore theft is very unlikely to happen. If technical

losses were falling post installation, then we should observe overall losses go down in

these three subsamples, as theft is presumably low. However, in all three cases, we find no

significant effect of theft-resistant cables on losses and the magnitudes of these coefficients

are much smaller compared to the main results in Table 1.

As a further check, we use a proxy for technical losses to examine whether feeder

lines with higher technical losses respond more to cable conversion, which would indicate
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a reduction in losses due to reductions in technical losses. We create a technical loss

proxy using baseline data on total transformer capacity of each feeder line. Specifically,

we calculate the baseline transformer load ratio, which is the fraction of units sent out in

a given month to the maximum units that transformer can handle based on its capacity.

Higher values of this load ratio are indicative of higher technical losses. In columns 4 and

5 of Table 2 we use this variable in levels and log interacted with the ABC variable. In

column 6, we use the NEPRA defined threshold of 0.8 to identify overloaded feeder lines,

which are expected to have higher technical losses. We do not find any evidence that

feeder lines with higher technical losses experience a greater reduction in overall losses

after the cable conversion.

The fact that the cable conversions occurred in the part of the distribution network

that does not account for the major share of technical losses supports the lack of evidence

suggesting a significant reduction in technical losses. The program involved installing

theft-resistant cables to replace bare wires between the transformers and customer me-

ters. However, technical loss assessments of Pakistani distribution companies suggest

that only 26% of the technical losses take place along these lines. Most of the technical

loss occurs either in the lines transporting electricity from the grid’s substation to the

transformer or within the transformer itself, as voltage is stepped down for service.30

These findings are also consistent with engineering calculations for cable conversion

in Iran, another high loss setting. Analyses by Abdollahi et al. (2020) indicate that tech-

nical loss reduction due to ABCs is at most 1.5 percentage points. Taken together these

pieces of evidence suggest that at least 6.7 percentage points of our main effect of 8.2

percentage points is not explained by technical loss reduction. Therefore, we interpret

the loss reductions as being driven by reductions in unbilled consumption and turn to

30We use data from internal reports made available by NEPRA assessing technical losses in different
parts of the distribution system. These assessments, which were carried out between 2015-20 for all state-
owned distribution companies, indicate that only 26% of technical loss occurs in the low tension wires and
cables used to distribute electricity between the transformers and the customers. The other three quarters
of technical loss occurs elsewhere in the distribution system.
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examine mechanisms related to theft.

6.2.2 Effects of Theft-resistant Cable Installation on Customer Numbers

Unbilled consumption could fall due to increased formalization of customers. Customers

previously connecting to the grid via informal, illegal connections may shift to formal

connections at the time theft-resistant cables are installed. We investigate this channel

through both event studies and regression analyses.

We perform an event study in which the outcome variable is the number of all types

of consumers on a feeder-line over time (Appendix Figure C3). There is no evidence of a

statistically significant difference in pre-trends between the treated and untreated feeder-

lines. There is a statistically significant increase in the number of customers following

the installation of the theft-resistant cables. The number of customers begins to increase

starting from the third month after the installation of the theft-resistant cables. This is

consistent with the information provided by the utility that stated that the time required,

on average, between a connection application being submitted and the connection being

approved and functioning was 3 months or longer.

As before, we implement two regression analyses to estimate the impact of theft-

resistant cables on the number of consumers. One uses the binary indicator of cable in-

stallation as the treatment variable and the other uses the proportion of transformers in

a feeder covered by theft-resistant cables as the measure of treatment intensity. In Table

3 column 1, the outcome variable is the number of consumers – of all types – in each

feeder-line. We see a significant effect of theft-resistant cables on the total consumers in

both Panel A (using the ABC binary treatment indicator) and Panel B (using the treatment

intensity variable). Columns 2 through 6 in the table show the estimated impacts of the

cables on different categories of consumers (agricultural, bulk, commercial, industrial,

and residential). We find that overall the cable installation led to a 161 customer increase

at the feeder-line level (column 1) and that these changes were driven primarily by an in-
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crease in residential consumers (column 6). Results using alternative model specifications

have similar findings (Appendix Table C12).31

6.2.3 Consumers’ Bills for Electricity Services

Event studies indicate that, following the installation of theft-resistant cables, both res-

idential consumers’ quantity of billed units and the monetary billed amount increased

significantly (Appendix Figure C4). This is consistent with a reduction in kundas and an

increase in consumption of electricity services through formal grid connections. These

came with reductions in the probability of customers not paying their bill and an increase

in the payment ratio (the proportion of the billed amount paid for the month), which co-

incides with the increases in bill payment found in the feeder-level analysis. Lastly, there

is evidence of a reduction in irregular billing and indicators of theft.32

The DID regression results from these consumer-level analyses in Table 4 provide

further insights. Panel A shows the average treatment effect, similar to those in the event

studies. With our binary treatment variable indicating theft-resistant cable installation

and regressions including customer fixed effects, we interpret these coefficients as the im-

pacts of a bare wire from a transformer being converter to these theft-resistant cables on

the outcomes of always formal customers (in other words, customers that were using for-

mal connections prior to the ABC installation). In columns 1 and 2, the outcome variables

are the logarithm of billed units (kWh) and billed monetary amounts (rupees). Results

indicate that conversion led to a 9% increase in kWh of billed units (column 1) and a 9.8%

increase in billed amount (column 2). In addition, the probability of a customer not pay-

ing their monthly electricity bill on time decreased by 5.2 percentage points (column 3),

and the ratio of monthly billed quantity paid increased by 1.6 percentage points (column

31We use the raw numbers for our main model specification given the recent critiques on log-like mea-
sures (Chen and Roth, 2023; Mullahy and Norton, 2022). In Table C12, we report results from various
transformations and find that our results are unchanged.

32In Appendix Figure C5 and C6, we present event-study model estimates following the approach sug-
gested by Callaway and Sant’Anna (2021) and Sun and Abraham (2021). The results are similar.
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4). Finally, the probability of an irregular bill and the probability of theft during a month

reduced by 11.1 and 3.8 percentage points, respectively (equal to about a 55% and 76%

decrease in probability when compared to the outcome means).33

Panel B shows heterogeneity by expenditure group. Interestingly, the effects of the

theft-resistant cables on the low-expenditure and high-expenditure groups are of similar

magnitude for all outcomes except one. In column 5, the households with expenditures

greater than $2 per day are significantly less likely to have irregular bills within a month

than those households with expenditures less than $2 per day.

6.3 Utility’s Cost-Benefit Calculations

To put the utility’s benefits from this infrastructure upgrade in context, in this section we

compare those benefits with the costs of the theft-resistant cable installation and calculate

the net present value of upgrading the distribution system. In the paragraphs that follow,

we summarize the steps involved in these NPV calculations and present the results of the

exercise. Full details on these calculations are provided in Appendix D.

6.3.1 Costs of Theft-Resistant Cables

First, using data provided by KE, we create four cost scenarios, which allow us to put

bounds on the overall expected costs of theft-resistant cables. The costs potentially in-

cluded in our scenario calculations are: the costs of purchasing the theft-resistant cables

themselves, the labor costs for replacing the old bare wires with the cables, the cost of pur-

chasing – in addition to the theft-resistant cables – new meters to replace those old meters

installed on the premises of the customer, and the additional labor cost of replacing those

33We define the variable “Irregular Bills” as any billing category other than normal. Irregular bills arise
if the meter stops working or becomes faulty, if there are errors in recording units or calculating bills,
and when there is a case of theft or kunda detection by KE. The variable ”Thefts” is defined using the
billing category which specifies irregular bills due to theft detection. It is then a subset of larger category of
irregular billing.
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old meters.34

These scenarios result in a range of estimated costs per customer. Scenario 1 includes

only the costs of theft-resistant cables themselves, whereas Scenario 2 captures both the

cost of theft-resistant cables and of labor (per transformer) required to install them. The

labor expenses are not necessarily specific to this infrastructure upgrade – as even bare

wire need to be regularly replaced – and therefore a scenario (one) in which they are

omitted is reasonable. Scenarios 3 and 4 extend the first two to encapsulate the costs of

also replacing old meters, with the former including just material costs for purchasing

theft-resistant cables and new meters and the latter covering those costs plus the labor

costs for installation of both. The estimated costs to the utility are between 16,389 PKR

per customer (Scenario 1) and 33,630 PKR per customer (Scenario 4) (all scenarios shown

in Appendix Table D1). For simplicity, we assume these costs all occur upfront in year 0.

6.3.2 Benefits from Theft-Resistant Cables

To approximate the benefits to the utility, we use the change in customer payments follow-

ing the conversion to theft-resistant cables, based on the estimated increase in the mon-

etary billed amount from Table 4. These estimates will allow us to calculate the present

value of the upgrade.35 We divide these benefits per year by the number of consumers in

high-loss areas and calculate a benefit to the utility of 5,729 PKR per-consumer per year.

There are two interesting sources of uncertainty in determining the magnitude of the

expected benefits from the intervention: the discount rate and the lifespan over which the

technology is expected to function. For this reason, we present calculations of benefits for

ranges of both discount rates and expected lifespans. First, we calculate the utility’s dis-

counted benefits over a range of discount rates (8%, 10%, and 12%), which are informed

34As previously-mentioned, KE sometimes replaced old, faulty meters with new meters at the time when
theft-resistant cable conversion occurred. These new meters are the same technology as the old ones that
they replaced (i.e., they are not a more advanced technology, such as prepaid meters or smart meters).

35We note, however, these estimates are calculated from KE’s conversion of high loss feeder lines to
theft-resistant cables and therefore they cannot be extrapolated to low loss feeders or settings.
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by KIBOR Rates for this time period.36 Further, given the expected lifespan for theft-

resistant cables in Karachi is less than the average expected lifespan globally due to local

conditions (10 years, per conversations with KE, instead of between 15 and 20 years), we

calculate the benefits for a range of lifespans.

We find that the range of discounted benefits per customer to be between 32,373 PKR

(10 year lifespan with 12% discount rate) and 56,253 PKR per customer (20 year lifespan

with 8% discount rate), which is between 216 and 375 USD, respectively. Full results of

the discounted benefits are in the Appendix (Table D2).

6.3.3 Net Present Value of Theft-Resistant Cables

Lastly, we compare the benefits, as calculated for these different time horizons with vary-

ing discount rates, with the costs of the intervention to calculate the net present value of

the theft-resistant cables. These net present value calculations are presented in Table 5

(results converted to USD are in the Appendix, Table D4). All of the scenarios result in

positive NPV, except the most conservative calculation, which is quite unlikely (benefits

calculated for a 10-year lifespan using a 12% discount rate and the highest cost scenario).

7 Effects on Consumers

Thus far, the evidence indicates that this technical solution – theft-resistant cables – is

a beneficial investment for the electricity utility. In this section, we shift to examining

the effects of theft-resistant cables on consumers in the areas in which those cables were

installed. We show that the hours of load shedding decline. Consumers’ complaints to

the utility decrease in these areas, but, a more nuanced analysis indicates an increase in

complaints to the utility regarding billing issues. Analyses of the units delivered, billed,

36KIBOR rates refer to the Karachi Interbank Offered Rate, which is the daily rate at which banks offer
funds to each other. KIBOR is then used as the benchmark for lending to the corporate sector (State Bank
of Pakistan, 2023).
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and unbilled indicate that – although the billed units increased for the always formal cus-

tomers following the installation of ABCs (shown in Table 4) – the quantity of electricity

services consumed appears to decline for the previously informal customers following

the installation of the theft-resistant cables.

Using our cross-sectional survey data, we compliment the causal evidence with cor-

relational analyses that shed light on how these effects manifest within households.

7.1 Electricity Services

During the study period (and years prior), the electricity utility employed a load shedding

strategy that allocated more hours of outages to areas with higher losses. To do so, feeder-

lines were assigned to load shedding categories based on their losses in the prior months.

If a neighborhood served by a feeder-line reduced its losses, then the feeder-line could

move to a better load shedding category with fewer hours of outages allocated per day.

7.1.1 Hours of Load Shedding

As we showed in Section 6, the utility’s financial indicators improved – unbilled con-

sumption fell and bill recovery increased – following the installation of the theft-resistant

cables. If this reduction in losses was sufficient to shift the feeder-line to a better category,

then we should see a decline in the hours of load shedding.

Leveraging the utility’s record on these planned outages, we estimate the causal ef-

fect of the cables on the average hours of load shedding per day in a month. We perform

the analyses in levels and logs and present results in Table 6.

The first two columns use the whole sample, whereas the last two columns focus on

high-loss IBC regions. We find unambiguous evidence of reduced load shedding follow-

ing cable conversion, indicating that households are scheduled to receive more hours of

electricity services per day. The coefficient estimate in Panel A, Column (3) suggests that,

on average, cable conversion decreased daily load shedding by 0.4 hours. The impact
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is increasing in conversion ratio in both the whole sample (column 2) and the high-loss

IBC sample (column 4). As robustness checks, we use the inverse hyperbolic sine of the

average hours of electricity supply per day and get similar results (Appendix Table C13).

We supplement these causal findings with correlational analyses. Given that our resi-

dential consumer survey is cross-sectional, we compare households located in feeder lines

with theft-resistant cables installed with households in feeder lines without those cables

installed. Table 7 presents differences in reported hours of load shedding for households

in summer (column 1) and winter (column 2). Consistent with our causal estimates in-

dicating a decline in load shedding (Table 6), households reported fewer hours per day

of load shedding in both the summer and winter in the cabled areas, relative to the non-

cabled areas. The estimated reduction in load shedding is approximately one fewer hour

of load shedding in areas with theft-resistant cables, depending on the season. Notably,

the mean reported load shedding in the control group is 8.5 hours per day in the summer

and 6.9 hours in the winter.

It is possible that some of the differences in reported outages shown in Table 7 – be-

tween areas with theft-resistance cables installed and those without – are due to the theft-

resistant cables also affecting unplanned outages (not just load shedding). ABCs could

reduce load (given we see a reduction in the quantity of electricity sent out to treated

feeder lines in Appendix Table F7) and therefore also reduce the incidence of unplanned

outages. For example, Carranza and Meeks (2021) illustrate how overloaded distribution

infrastructure is a source of unplanned outages. We unfortunately cannot shed more light

on that channel for our current study, without additional data.

Lastly, we note that these effects on the hours of load shedding are linked to the util-

ity’s policy on and allocation of load shedding based on losses (as detailed in Appendix

A1). Theft resistant cables would not necessarily have the same effect on load shedding

hours in a location without a similar policy.
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7.1.2 Consumption of Electricity Services

Given theft-resistant cables led to fewer hours of load shedding, we anticipate that this

may translate into effects on the consumption of electricity services. Fewer hours of load

shedding means that consumers can use appliances and consume the services that they

provide for more hours per day. One summary measure of consumption of electricity

services is household electricity expenditures. Table 8 shows that households in areas

with cables installed have significantly higher electricity expenditures both per household

(column 5 Panel A) and per capita within a household (column 5 Panel B). Interestingly,

this does not appear to mean lower non-electricity expenditures (column 3), but slightly

(albeit insignificantly) higher total expenses (column 1).

These higher electricity expenditures could come from increased consumption of

electricity services on the intensive (greater use of the appliances that they own) or ex-

tensive (adding new appliances) margins. Results in Table 7 indicate that cables are cor-

related with changes along both margins: households in cabled feeder lines have 0.55

more appliances (column 3) and use their appliances 3.6 more hours per day (column 4),

on average, than those without cables installed.

To investigate the extent of substitution that occurs from informal to formal con-

sumption, we estimate the effect of theft-resistant cables on the quantity of units sent out

(in kWh) to feeder lines and decompose that into the quantity of units that are billed ver-

sus unbilled (ignoring the technical loss change and decreased load shedding). Results

are in Table 9. Focusing on high-loss IBCs, we see that the unbilled units decrease by

125,617 kWh, units sent out decrease by 99,979 kWh, and billed units increase by 25,638

kWh. Assuming the change in billed consumption is avoided theft that is substituted to

formal consumption and the change in unbilled consumption is total avoided theft, we

divide the change in billed consumption by the change in unbilled consumption (25,638

kWh / 125,617 kWh) and find that an estimated 20.4% of the reduction in unbilled units

may be due to substitution to formal consumption. This is an overestimate as we assume
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billed consumption increases only due to avoided theft and not due to other factors such

as decreased loadshedding. This result, however, does seem to suggest that consumers

who were stealing electricity do not substitute a major portion of their consumption to

formal consumption. This is likely because they can no longer afford it.

Further analyses on electricity consumption are limited by the fact that both our sur-

vey data and the administrative billing data are limited to formal customers. We do

not observe consumers who are never formal customers. We are also unable to defini-

tively identify those customers who were previously informal and are now formalized,

as new accounts created with KE after the cable conversion may be previously informal

customers shifting to formal connections or they may simply be new properties getting

connected for the first time. Moreover, even the customers who were always formal may

have been using kundas for some portion of their consumption prior to the cable conver-

sion.

With these limitations in mind, we carry out exploratory analysis to shed light on

how the consumption of previously informal customers and incumbent customers might

have been impacted by the theft-resistant cables. This analysis requires multiple assump-

tions. First, we must assume that all those new customers who joined within six months

of cable conversions were previously informal. Second, we must assume that the incum-

bent customers were not stealing. Using data on the date the customers get a connection,

we identify the group of new and (presumably) previously informal customers. We plot

the distribution of monthly billed units and monthly average billed units for the new

customers relative to the distribution of incumbent customers and find that the consump-

tion distribution of the new customers lies to the left of the distribution for incumbent

customers (Appendix Figure C7). This suggests that formalization is driven by the poor-

est of the poor converting to formal connections. Interestingly, the distribution of both

monthly usage and average monthly usage for new users peak below 200 units, which

is the government-designated threshold for protected consumers (i.e. consumers whose
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variable cost tariffs are highly subsidized by the government).37 This further highlights

that the intervention may have had the greatest effect on the poorest households.

We also carry out quantile regression analysis to explore the impact of cable conver-

sions across the distribution of billed units. Results from the quantile regression analy-

sis (Appendix Table C15) suggest that cable conversion had higher effects at lower per-

centiles of the distribution of billed units, both within and across consumers (Panel A

and B respectively). The larger effects might be driven by substitution away from kundas

to formal consumption, consistent with our previous finding that newly formalized cus-

tomers are in the lower part of the distribution. However, the results are only suggestive,

as they may also be driven by factors other than formalization (e.g. by a reduction in ra-

tioning that affected poorer households more if they lacked back-up systems). Finally, we

note that this exploratory finding of formalization affecting poorer households also sug-

gests that policy makers may need to revisit the tariff structure, as those with the highest

subsidy, were seemingly more likely to use informal channels. The greater demand for

informal connections in this group might also reflect lack of trust in the utility due to

perceptions of poor service delivery at high cost.

7.2 Perceptions of Billing

With the installation of theft-resistant making illegal connections more difficult, some

households are either changing from a kunda to a formal connection or shifting from

splitting their consumption between a kunda and formal connection to having all their

consumption billed based on a meter reading (or generally having their consumption

billed based on the regulator-set tariff schedule). For these reasons, many households

are paying more than they did previously (prior to the cable conversion) for their con-

sumption of electricity services. As a result, the utility’s consumers may be disgruntled,

37A protected consumer is defined as a household whose monthly consumption remains below 200 units
for 6 months continuously.
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unhappy with the amount that they owe, or just simply confused by their monthly bill

and how it is calculated. In this section, we investigate how the theft-resistant cables may

affect consumers’ actions towards and beliefs about the utility.

7.2.1 Complaints to the Utility

The most direct indicator that we have to measure consumers’ unhappiness and how it is

affected by the cable installation is through the consumers’ direct complaints to the utility.

Consumers may submit formal complaints to the utility for a number of reasons (e.g.,

complaints regarding deterioration of service quality or disputes of bills). We investigate

whether any of these were impacted by the theft-resistant cables in this subsection.

We use the utility’s data on consumer complaints at the feeder-line level, and the

type of complaints filed, to estimate impacts of theft-resistant cables on these outcome

measures. Regression results are presented in Table 10, with Panel A reporting results

where the outcome variable is the number of complaints and Panel B normalizing these

results relative to the number of consumers at a feeder line. Estimation results across

the two panels suggest that consumer complaints overall decrease with cable conversion,

which is mainly driven by the decline in technical complaints and is consistent with im-

provements in service quality. Complaints about billing also increase, which is in line

with our survey results showing that consumers in treated areas distrust KE billing more

than those in non-treated areas (see next section). We also report estimation results using

alternative measures of the outcomes, and find similar results (Appendix Table C14).

7.2.2 Beliefs about Billing

Lastly, we use data from survey questions designed to elicit respondents’ beliefs and per-

ceptions to understand if there are differences across treated and non-treated households

with respect to the electricity utility, load shedding, and billing/bill payment. Results

are presented in Figure 3. Households in areas with theft-resistant cables are, on aver-
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age, less likely to believe that their electricity bills accurately reflect their consumption

and more likely to report that bill errors are a concern. These consumers are, however,

also less likely to believe that electricity quality issues (both electricity shortage and load

shedding) are problems, which is consistent with our earlier results.

8 Conclusions

The International Energy Agency (2020) expects that between 2020 and 2030, 16 million

kilometers of existing electricity distribution lines need to be replaced, with approximately

60% of these replacement needs located in low and lower-middle income countries. This

will require vast financial investments by distribution companies worldwide. And this

does not even include the investments needed for the newly-constructed distribution lines

in settings that are being electrified for the first time – as of 2020, 733 million people

around the world still were without electricity (United Nations, 2022). Taken together,

substantial investments in distribution infrastructure are expected in the near future, as

distribution companies face the decision as to whether to invest in bare wires or more

expensive theft-resistant cables.

In this paper, we present evidence on the impacts of an upgrade to distribution lines

in Karachi, Pakistan that prevented illegal connections to the grid. We find that the theft-

resistant cable conversion both significantly reduced unbilled consumption (theft) and

increased bill payment. We find evidence that the cables achieved these impacts by in-

creasing the total number of formal metered residential customers, increasing the quan-

tity of billed units (and therefore the billed monetary amounts) as well as the payment

ratio, while decreasing irregular bill payment and indicators of theft. Together, these re-

sults are indicative of these cables making illegal connections to the distribution wires

more difficult and, as a result, more customers becoming formal customers of the utility.

The results for revenue recovery (a measure of bill payment), show a dissipating effect
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and highlight the need for future research to study the relationship between technical

and behavioral interventions designed to improve bill payment behavior.

Finally, our consumer related results suggest some benefits due to improvements in

consumption of electricity services and reliability. However, results also suggest that the

intervention formalized mostly poorer customers and that electricity consumption de-

clined among the newly formal customers (i.e. previously informal consumers). Thus,

we can not rule out the redistributive argument for tolerating theft previously. This sug-

gests that such interventions ought to be paired with additional tariff and social assistance

reforms for the poorest households.
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Figure 1: Theft-resistant Cable Installation Over Time

Notes: This figure shows the incremental and cumulative number of transformers with ABCs installed over
time in Karachi, Pakistan.
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Figure 2: Event-Study Estimates: Impacts of Theft-resistant Cables on Losses and
Revenue Recovery

Notes: The figure shows the coefficients and their 95% confidence intervals from an event-study regression
estimating the impact of ABC installation on losses and the revenue recovery rate. Data are at the feeder
level on a monthly basis. Regressions include IBC-by-month and feeder fixed effects. One month prior to
the ABC installation (−1) is the reference group, and the corresponding coefficient is normalized to zero.
Standard errors are clustered at the feeder level.
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Figure 3: Differences in Household Beliefs Across Cabled and Non-cabled Areas

Notes: The figure plots coefficients and their 95% confidence intervals from regressing outcome variables on
the interactions between ABC (a binary dummy that equals 1 if the household is served by a transformer
with ABCs installed) and two categorical income variables (Above2 and Below2). The variable Above2
equals 1 if the household’s expense per capita is above $2 each day, and the variable Below2 equals 1 if
the household’s expense per capita is below $2 each day. Data were collected via our household survey
implemented in late 2021, asking respondents to indicate whether they agreed or disagreed with the belief
statements. The outcome variables here are binary indicators equaling 1 if the respondent indicated some
level of agreement (mildly agree to strongly agree) with the statement and zero otherwise. Regressions
include control variables: total number of family members, number of rooms, indicators for house owner-
ship, indicators for owning a car, indicators for having financial accounts, expenditures on food items, and
binary indicators for household income categories. Standard errors are clustered at the transformer level.
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Table 1: Effect of Theft-Resistant Cables on Losses and Revenue Recovery

Monthly Quarterly

Loss Revenue
Recovery

Loss Revenue
Recovery

(1) (2) (3) (4)

Panel A: DID Estimates
ABC −0.082*** 0.052*** −0.080*** 0.064***

(0.009) (0.009) (0.009) (0.009)

Panel B: Intensity of Treatment
ABC Ratio −0.176*** 0.090*** −0.175*** 0.105***

(0.013) (0.013) (0.013) (0.013)

Control Mean 0.229 0.828 0.210 0.855
Observations 47,575 37,353 17,626 14,664
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓
IBC-Quarter FE ✓ ✓

Notes: Data are at the feeder-line level. ABC is a binary indicator that equals 1 when the
feeder-line has transformers with ABCs installed, and equals zero otherwise. ABC ratio
is defined as the number of transformers with ABCs installed divided by the number of
total transformers in a feeder-line. All regressions include feeder and IBC-by-month or
IBC-by-quarter fixed effects. Standard errors in parentheses are clustered at the feeder-
line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 2: Mechanisms: The Role of Technical Losses

Dep. Var.: Loss

(1) (2) (3) (4) (5) (6)

ABC -0.029 -0.025 0.027 -0.073*** -0.089*** -0.081***
(0.018) (0.037) (0.018) (0.028) (0.017) (0.009)

ABC × Load Ratio -0.015
(0.045)

ABC × ln(Load Ratio) -0.013
(0.024)

ABC × I[Overload] -0.004
(0.022)

Restrict to Low-Loss Feeder Lines ✓
Restrict to Feeder Lines with Base Loss < 0.1 ✓
Restrict to Industry/Strategic Feeder Lines ✓
Number of Feeders 809 327 443 1,687 1,687 1,687
Observations 19,944 7,446 9,095 45,710 45,710 45,710

Notes: Data are at the feeder-line level. ABC is a binary indicator that equals 1 when the feeder-line has transformers with ABCs
installed, and equals zero otherwise. Column (1) restricts to feeder lines that are classified as low loss by KE (losses <0.25) in
January 2018, the first month of our sample. Column (2) restricts to feeder lines whose average losses over January 2018 to June
2018 are less than 0.1. Column (3) restricts to feeder lines that are categorized as industry or strategic by KE. Columns (4)-(6) use
the whole sample. Load Ratio is the average ratio of monthly electricity supply relative to the total electricity units that a feeder
line can handle given the transformer capacity. We measure the load ratio for each feeder line using the 2017 monthly electricity
supply data and by taking the average over the 12 months. I[Overload] is an indicator for whether the feeder line is overloaded
with the load ratio that is higher than 80%. All regressions include feeder-line and IBC-by-month fixed effects. Standard errors
are clustered at the feeder-line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 3: Mechanisms: Effects of Theft-Resistant Cables on Consumer Numbers

Number of Consumer Total Agriculture Bulk Commercial Industry Resident
(1) (2) (3) (4) (5) (6)

Panel A: DID Estimates
ABC 161.586*** 0.032 -0.005 2.227 -0.896 160.229***

(46.574) (0.152) (0.007) (5.564) (0.813) (43.496)

Panel B: Intensity of Treatment
ABC Ratio 436.463*** -0.035 -0.009 4.154 -2.014 434.367***

(60.565) (0.170) (0.009) (7.383) (1.251) (55.626)

Outcome Mean 1,612.16 1.26 0.09 268.35 11.93 1,330.54
Observations 67,602 67,602 67,602 67,602 67,602 67,602
Feeder-line FE ✓ ✓ ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: Data cover the period between June 2018 and March 2021. The outcome variable is the number of consumers
in each feeder-line. Columns 2–6 refer to different consumer categories. ABC is a binary indicator that equals 1 when
the feeder-line has transformers with ABCs installed, and equals zero otherwise. ABC ratio is defined as the number
of transformers with ABCs installed divided by the total number of transformers in a feeder-line. All regressions in-
clude feeder-line and IBC-by-month fixed effects. Standard errors in parentheses are clustered at the feeder-line level.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4: Mechanisms: Effect of Theft-Resistant Cables on Customer Behaviors

ln(Billed
Units)

ln(Billed
Amount)

Not Pay Payment
Ratio

Irregular
Bills

Theft

(1) (2) (3) (4) (5) (6)

Panel A: Average Treatment Effect
ABC 0.090*** 0.098*** −0.052*** 0.016*** −0.111*** −0.038***

(0.024) (0.029) (0.012) (0.005) (0.021) (0.008)

Panel B: Heterogeneity by Expenditure Groups
ABC × Below2 0.090*** 0.096*** −0.050*** 0.017*** −0.106*** −0.038***

(0.024) (0.030) (0.012) (0.005) (0.020) (0.008)
ABC × Above2 0.086 0.118* −0.076*** 0.014 −0.159*** −0.039***

(0.060) (0.070) (0.027) (0.011) (0.041) (0.015)

Outcome Mean 241.05 3,369.08 0.33 0.20 0.20 0.05
Observations 88,296 88,296 88,296 88,296 88,296 88,296
Number of Households 3047 3047 3047 3047 3047 3047
Customer FE ✓ ✓ ✓ ✓ ✓ ✓
Month FE ✓ ✓ ✓ ✓ ✓ ✓
Transformer-M-of-Yr FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: Customer-level data are provided by KE for June 2018 through August 2021. These residential cus-
tomers are all “active” accounts within the KE system as of August 2021. The outcome variables include billed
electricity units (in log), billed electricity amount (in log), an indicator for whether the customer does not pay
electricity bills on time, the proportion of payment relative to the total due to KE (payment ratio), an indica-
tor for whether there are irregular bills in that month, and an indicator for whether there are any irregular bills
specifically due to theft in that month. ABC is a binary dummy that equals 1 if the household is served by
a transformer that has ABCs installed already. The indicator Above2 equals 1 if the household’s expense per
capita is above $2 each day, and the indicator Below2 equals 1 if the household’s expense per capita is below $2
each day. All regressions include customer, month, and transformer-by-month-of-year fixed effects. Standard
errors are clustered at the transformer level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 5: Net Present Value per Consumer: Costs versus Benefits of Cable Conversion

Cable Cost Scenarios (PKR)

Variations in lifespans and
discount rates

1 2 3 4

Panel A: 20-year lifespan
8% 39863.5 35766.2 31337.1 22622.2
10% 32388.9 28291.6 23862.5 15147.6
12% 26406.7 22309.4 17880.3 9165.3

Panel B: 15-year lifespan
8% 32652.0 28554.7 24125.6 15410.7
10% 27189.5 23092.2 18663.1 9948.2
12% 22633.4 18536.1 14106.9 5392.0

Panel C: 10-year lifespan
8% 22055.9 17958.6 13529.5 4814.6
10% 18815.8 14718.5 10289.4 1574.5
12% 15983.5 11886.2 7457.1 -1257.8

Notes: All values are in PKR per customer. Discount rates are based on Kibor Rates documented by the
State Bank of Pakistan for this time period. The expected lifespan of theft-resistant cables installed in
Karachi (per KE) is 10 years.
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Table 6: Effect of Theft-resistant Cables on Hours of Electricity Supply

Dep. Var.: Average Hours of Electricity Supply Per Day

Whole Sample High-Loss IBCs

(1) (2) (3) (4)

Panel A: Raw Levels
ABC 0.396*** 0.402***

(0.087) (0.089)
ABC Ratio 1.023*** 1.057***

(0.123) (0.125)

Panel B: Logs
ABC 0.021*** 0.021***

(0.004) (0.005)
ABC Ratio 0.054*** 0.056***

(0.006) (0.007)

Outcome Mean 19.93 19.93 18.01 18.01
Observations 34,997 34,997 12,298 12,298
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓

Notes: Data are at the feeder-line level on a monthly basis. The outcome variable is av-
erage hours of electricity supply per day in a month (measured in raw levels and logs).
ABC is a binary indicator that equals 1 when the feeder-line has transformers with ABCs
installed, and equals zero otherwise. ABC ratio is defined as the number of transformers
with ABCs installed divided by the number of total transformers in a feeder-line. All re-
gressions include feeder and IBC-by-month fixed effects. Standard errors in parentheses
are clustered at the feeder-line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 7: Evidence on Household-Reported Service Quality and Appliances

Daily Hours of Load
Shedding/Power Cuts

Total
Number of
Appliances

Total Hours
of Daily
Usage

Summer Winter
(1) (2) (3) (4)

ABC −1.136*** −1.053*** 0.550*** 3.624***
(0.266) (0.329) (0.152) (0.831)

Control Mean 8.541 6.872 6.833 18.409
Observations 3,068 3,068 3,068 3,068
Control ✓ ✓ ✓ ✓
IBC FE ✓ ✓ ✓ ✓

Notes: Outcome variables are collected via our household survey implemented in late 2021.
ABC is a binary dummy that equals 1 if the household is served by a transformer with ABCs
installed. Control variables include the total number of family members, number of rooms,
indicators for house ownership, indicators for owning a car, and indicators for having finan-
cial accounts. Standard errors are clustered at the transformer level. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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Table 8: Effect of Theft-Resistant Cables on Household Expenditures

Expenditures (log) Total Non-Electricity Electricity

(1) (2) (3) (4) (5) (6)

Panel A. Per Household
ABC 0.073** 0.036 0.282***

(0.031) (0.036) (0.048)
ABC × Below2 0.069** 0.025 0.286***

(0.029) (0.034) (0.049)
ABC × Above2 -0.125 -0.049 0.114

(0.090) (0.091) (0.124)

Outcome Mean 33,639 33,639 28,577 28,577 5,061 5,061

Panel B. Per Capita
ABC

0.067* 0.031 0.276***
(0.037) (0.040) (0.058)

ABC × Below2 0.054 0.009 0.267***
(0.033) (0.036) (0.059)

ABC × Above2 -0.123 -0.047 0.120
(0.075) (0.074) (0.132)

Outcome Mean 5,698 5,698 4,763 4,763 935 935

Observations 3,001 3,001 3,001 3,001 3,001 3,001

Notes: Expenditures are in Pakistani rupees and the exchange rate at the time was approximately 1 USD
= 170 rupees. Outcome variables are measured in logs and are collected via our household survey imple-
mented in late 2021. ABC is a binary dummy that equals 1 if the household is served by a transformer with
ABCs installed. All columns include IBC fixed effects and control variables (total number of family mem-
bers, number of rooms, indicators for house owners, indicators for owning a car, and indicators for having
financial accounts). We only add the number of family members to the list of control variables in Panel A.
Above2 = 1 if the household’s expense per capita is above $2 each day and Below2 = 1 if the household’s
expense per capita is below $2 each day. Standard errors are clustered at the transformer level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table 9: Effect of Theft-Resistant Cables on Feeder-Line Units Sent-Out, Billed, and Unbilled

Dep. Var.: Units Sent Out Billed Units Unbilled Units

All IBCs High-Loss IBCs All IBCs High-Loss IBCs All IBCs High-Loss IBCs
(1) (2) (3) (4) (5) (6)

ABC -97,213.292*** -99,979.129*** 21,213.969* 25,638.304** -118,427.260*** -125,617.432***
(18,433.656) (19,301.459) (12,457.822) (12,819.123) (15,478.883) (15,883.593)

Constant 940,218.080*** 1,088,416.247*** 679,073.763*** 652,042.557*** 261,144.317*** 436,373.690***
(3,625.899) (12,649.465) (2,450.453) (8,401.181) (3,044.695) (10,409.522)

Observations 47,575 13,919 47,575 13,919 47,575 13,919
Feeder FE ✓ ✓ ✓ ✓ ✓ ✓
IBC-by-Month FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: Data are at the feeder-line level. ABC is a binary indicator that equals 1 when the feeder line has transformers with ABC installed, and equals
zero otherwise. All columns include feeder-line and IBC-by-month fixed effects. Standard errors in parentheses are clustered at the transformer level.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 10: Effect of Theft-resistant Cables on Consumer Complaints

Number of Complaints All Bill
Complaints

Service
Requests

Technical
Complaints

(1) (2) (3) (4)

Panel A: Total Measures
ABC -28.894*** 2.905*** 3.846* -35.644***

(4.295) (0.458) (2.292) (3.853)
Outcome Mean 88.52 5.67 32.59 50.26

Panel B: Per Consumer Measures
ABC -0.016*** 0.001*** 0.002* -0.019***

(0.002) (0.000) (0.001) (0.002)
Outcome Mean 0.265 0.011 0.086 0.167

Observations 71,918 71,918 71,918 71,918
Control ✓ ✓ ✓ ✓
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓

Notes: Data are at the feeder-line level on a monthly basis. The outcome variable is the number of
consumer complaints, including all types of complaints, bill complaints, service requests, and tech-
nical complaints. In Panel A, we add consumer number as a control variable. In Panel B, we use
per-consumer measures, defined as the number of complaints divided by the number of consumers
covered by a feeder-line. All regressions include feeder-line and IBC-by-month fixed effects. Stan-
dard errors in parentheses are clustered at the feeder-line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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A Background on Electricity Distribution

A1 Electricity Distribution and Load Shedding

Load shedding is a type of disruption in the distribution of electricity that is not uncom-
mon in many low and lower-middle income countries. When load shedding occurs in a
particular area there is no electricity being delivered to that location (e.g., along particular
feeder lines of the distribution system).38 Load shedding can be planned (and potentially
announced to the utility’s customers before the disruption begins) or unplanned (and
therefore also unannounced).

Crucial for our study, Karachi Electric’s load shedding policies remained unchanged
over the entire duration of our study period, which covers January 2018 to October 2020.
Nonetheless, it is helpful to understand the utility’s load shedding policy that was in
existence throughout the study period.

In a broad sense, utilities resort to load shedding when the electricity supply does not
meet demand. However, there are multiple reasons why supply might not meet demand
and these reasons vary across settings. In some settings, the electricity supply is limited
due to the generators’ physical plant capacity constraints and this causes a gap between
supply and demand. However, there are places – such as in Pakistan – where the electric-
ity supply is limited not by the generators’ plant capacity itself, but rather by the utility’s
ability to purchase the imported fossil fuels necessary to generate the electricity. Electric-
ity utilities in Pakistan, including Karachi Electric, face generation constraints associated
with such difficulties purchasing fuels and that is the constraint restricting supply (Ali,
Gaibulloev and Younas, 2023).

Due to this constraint, and as described in detail below, KE assigns load shedding at
a feeder line according to that particular feeder’s losses. In conversations in 2023, Karachi
Electric informed that any decrease in load shedding due to lower losses does not necessi-
tate an associated re-arrangement of power that requires increases in load shedding else-
where. Rather, the additional hours of electricity service delivered to areas where losses
have decreased requires that the utility purchase more fuel for electricity generation, but
this is possible because losses decreased and the utility is recovering more money per unit
of electricity delivered.

The intuition is as follows. By delivering electricity to areas where losses are low, the
utility is able to cover the costs of the fuel purchases required to generate that electricity.
Supplying electricity to areas where losses are high, the electricity utility cannot cover the
cost of the fuel purchases associated with that generation. Supplying electricity to high
loss areas increases the utility’s debt and makes it more difficult to purchase additional
fuel for future electricity generation. Load shedding based on Aggregate, Technical, and
Commercial (AT&C) losses, is an effort to limit adding to the utility debt. When load
shedding is due to fuel purchasing constraints – not physical plant generation capacity
constraints – a decrease in losses in a particular area can mean that the utility is able to
purchase more fuel and provide that area with additional hours of electricity services,

38Disruptions in electricity services due to load shedding are different than unplanned outages that occur
due to breakage within transmission and distribution systems.
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without requiring a decrease in hours of electricity supplied to other parts of the distri-
bution network.

Ali, Gaibulloev and Younas (2023) detail Karachi Electric’s load shedding policy in
the years leading up to our study period (2010-2018). Since 2010, Karachi Electric has
allocated load shedding based on the concept of rewarding good behavior (i.e., low theft
and therefore low loss feeders have no load shedding) and reprimanding bad behavior
(i.e., medium and high theft and therefore medium and high loss feeders are assigned
increasingly more hours of load shedding per day) through the allocation of hours of
load shedding outages (Ali, Gaibulloev and Younas, 2023). The idea is that feeder lines
with increasingly higher average losses will have more hours of load shedding per day.
Because the load shedding occurs at the feeder level, all utility customers served by that
feeder – both those that fully pay for electricity and those that do not – will be affected by
the disruption in electricity service that occurs during a period of load shedding (NEPRA,
2022b).

To implement their load shedding regime, KE first calculates for each feeder the Ag-
gregate, Technical, and Commercial (AT&C) losses, using the formula

AT&C = 1 − RR(1 − Loss),

where RR and Loss are that feeder-line’s Revenue Recovery and line-losses for the month.
Karachi Electric sets categories based on the average AT&C of a feeder line in the twelve
months prior and then allocates load shedding accordingly. These categories and the des-
ignated hours of load shedding per day are shown in Table A1. To allow feeder lines to
move up (or down) in the load shedding categories, every quarter the utility recalculates
losses using a twelve month rolling average and updates the allocations accordingly (Ali,
Gaibulloev and Younas, 2023). The table makes it evident that any changes in load shed-
ding allocation are based purely on the losses of the individual feeder line; a feeder’s load
shedding is not affected by other feeders.

Anecdotal evidence suggests that residents of Karachi are generally aware that load
shedding is correlated with losses and that neighborhoods with higher losses have more
hours of load shedding per day. In fact, Pakistan’s regulatory agency in a 2022 press
release stated that it noted high volumes of consumer complaints regarding AT&C based
load shedding for Karachi Electric as well as 4 additional distribution companies serving
other cities within the country (NEPRA, 2022b).

To the best of our knowledge, these load shedding assignments are not publicly avail-
able or published anywhere by the utility (e.g., they are not posted to the utility’s website).
It is not surprising that a utility would not widely advertise such details, given load shed-
ding is very unpopular among customers. We know based on the regulator’s information
in the above-mentioned press release that, KE is not the only utility in the country imple-
menting such AT&C based load shedding; at least 5 of the 11 distribution companies in
the country are using such processes to allocate load shedding. However, this dearth of
information makes it difficult to determine the extent to which load shedding allocations
based on losses are commonly employed elsewhere.

To understand whether loading shedding is allocated according to losses in other
developing countries – and knowing that these policies might not necessarily be widely
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Table A1: Utility Allocation of Load Shedding Hours According to Average
Feeder Line Losses

Feeder Line Loss
Category

Low Medium High Very High

AT&C losses < 25% 25-35% 35-50% > 50%

Hours per day of
load shedding
allocated

0 3 6 7.5

Notes: The load shedding allocations in this table are by feeder line and were in place from
2010 through 2022. AT&C losses refers to an index of losses constructed by KE that combines
feeder level losses and revenue recovery into a single variable. According to Ali, Gaibul-
loev and Younas (2023) the utility allocated load shedding by these thresholds in 2010 and
this continued through 2018. Our team’s recent communications with the utility indicate
that these exact thresholds and allocations of hours continued through 2022, well past the
end of our study period.

publicized by the utilities themselves – we searched news articles for evidence of load
shedding such news. We found evidence from newspaper articles of load shedding being
allocated to high loss areas (and low loss areas being spare) in parts of India (Roy, 2013;
Sen, 2022). Further, we found evidence that Eskom, the electricity utility in South Africa,
has employed a form of load shedding targeted to areas with higher theft. Specifically,
Eskom has implemented “load reduction” in which they shut down electricity supplies
for a few hours a day in some areas in response to high electricity theft and illegal connec-
tions. The utility differentiates this load reduction from load shedding, which they claim
occurs only due to insufficient generation capacity (Groenendaal, 2020).

A2 Distribution Infrastructure

The International Energy Agency (2020) expects that between 2020 and 2030, 16 million
kilometers of existing electricity distribution lines need to be replaced, with approximately
60% of these replacement needs located in low and lower-middle income countries. This
will require vast financial investments by distribution companies worldwide; and this
does not even include the investments needed for newly-constructed distribution lines in
settings that are being electrified for the first time in efforts to meet the Sustainable De-
velopment Goals.39 Taken together, substantial investments in distribution infrastructure
are expected in the near future. Further, distribution network investments are costly, not
just in monetary terms but also in terms of time costs. Lower voltage distribution projects
typically require 4-7 years to complete (International Energy Agency, 2022). Costs vary
based on the quality and materials used in the components of the distribution network.

39Sustainable Development Goal 7 calls to “ensure access to affordable, reliable, sustainable and modern
energy for all.” As of 2020, 733 million people around the world still were without electricity (United
Nations, 2022).
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To better understand the different technology options available for use within distri-
bution networks and and the path towards the cabling intervention studied in this paper,
we conducted several types of literature searches. First, we reviewed the academic liter-
ature on ABCs, which is primarily from the field of electrical engineering, to understand
the history of the ABCs technology, both in terms of the timing of development and the
motivation for historical uses. Second, we looked to popular news coverage and project
documents to understand the motivation for recent installation of ABCs in Pakistan. We
report the results of our search in the following sub-sections.

A2.1 Low-cost Infrastructure

To invest in new or updated infrastructure, distribution companies need adequate rev-
enue to cover those costs. Network revenues typically are generated through tariffs that
are designed to incorporate the costs of grid investments (International Energy Agency,
2020). Inherently, there is a tension between pressure to keep electricity tariffs low and
efforts to set tariffs sufficiently high in order to generate revenue to cover infrastructure
investments. This tension is particularly felt in low and lower-middle income countries,
where there are pressures to increase electricity access, but large proportions of the pop-
ulations live in poverty. Efforts to keep down electricity tariffs in low-income settings
means that the quality of infrastructure construction and service provision often diverges
from that which is found in middle and high income settings.

Burying electricity lines underground is the best option, as it limits disruption from
wind, storms and trees; however, it is also the most expensive. Of the aerial options, ABCs
are more expensive than the open/bare lines frequently used in these settings. A distri-
bution company must weigh the benefits of the different wire/cable options against their
costs (Clapp et al., 1997). Analyses comparing the costs of replacing existing conductors
with either new bare conductors, new covered conductors, or relocating the conductors
underground, the costs were estimated to be 0.3, 0.43, and 3 million USD per mile, re-
spectively (Southern California Edison, 2018). As a result, low voltage distribution lines
in higher income countries are typically either buried underground or are comprised of
covered conductors such as aerial bundled cables (ABCs), whereas in lower income coun-
tries bare wires were most often installed, until recently.

A2.2 Technical Background and Historical Use of ABCs

Starting in the early 1970s, electricity distribution companies began installing aerial insu-
lated and covered wires and cables within their distribution systems to overcome prob-
lems with bare wires. Broadly-speaking, “covered conductor” is the term used to refer
to conductors with “an internal semiconducting layer and external insulating UV resis-
tant layers to provide incidental contact protection”, and this covering differentiates the
conductor from a bare wire conductor.40 Aerial Bundled Cables (ABCs), one type of com-
monly used covered conductor, are twisted and tightly bundled insulated low voltage

40Other terms used for “covered conductors” include “insulated conductor” and “coated conductor”
(Pacific Gas and Electric Company, 2021).
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cables (Pacific Gas and Electric Company, 2021).41 When introduced to electricity distri-
bution systems in the late 1900s, ABCs were considered quite revolutionary; upon instal-
lation in Australia in the early 1980’s, ABCs were hailed as “the biggest step forward in
overhead distribution line practice in 50 years” (Williamson et al., 1989).

The earliest ABC installations are documented in high income countries, justified by
the technology’s ability to increase personal safety and make the distribution system re-
sistant to external abrasion and puncture due to trees (Oliveira et al., 1996; Li, Su and
Shen, 2010). For example, when the Electricity Supply Board serving the Republic of Ire-
land replaced their aging traditional open distribution wires with low voltage ABC lines
in the late 1970s, they argued that ABCs led to fewer incidences of accidental electrical
contact, improved continuity of service provision during storms, and reduced need for
frequent tree trimming (Murray, 1995).

Since the 1980s, ABCs have become ubiquitous in many high income countries, par-
ticularly in Europe. La Salvia (2006) mapped ABC low voltage usage worldwide as of
2006; at that time, ABCs were pervasive in Europe and installed – albeit less extensively
– in South America. For example, international energy giant, Enel Power, reported on
its extensive introduction of ABCs back in 1993 (Gasparini et al., 1993) and, as of early
2000s, low voltage ABCs were France’s largest installed distribution network (La Salvia,
2006). In the northeastern region of the United States, an estimated 80% of distribution
lines are comprised of covered conductors, with the remaining 20% comprised of bare
wires (Southern California Edison, 2018). Recently, covered conductors – including ABCs
– have received much attention in California, as the state seeks to prevent future wildfires
(Pacific Gas and Electric Company, 2021). Other high income countries with extensive
installation of covered conductors include the United Kingdom, Finland, Sweden, South
Korea and Japan.

Historically, there is less ABC installation in South Asia and Africa, with South Africa
being a notable exception (La Salvia, 2006). However, the literature indicates that the justi-
fications for ABC installation have shifted over time, leading to the technology spreading
to additional countries.

A2.3 ABCs to Reduce Unbilled Consumption

The characteristics of ABCs that make them less prone to tree puncture also make them
less susceptible to illegal tapping and electricity pilferage. Indeed, in recent publications,
engineers argue that replacing basic aerial lines with ABCs is considered a “practical and
effective” solution to reduce non-technical losses by (Abdollahi et al., 2020). This use of
ABCs is particularly focused on settings where electricity theft is common, in low and
lower middle income countries (La Salvia, 2006). The literature documents the installa-
tion of ABCs with the specific purpose of reducing theft, and non-technical losses more
broadly, by utilities in countries such as Brazil, India, Iran, Mexico (La Salvia, 2006; Agar-
wal, Mukherjee and Barna, 2013; Abdollahi et al., 2020).

The potential of ABCs to help rectify the challenge of unbilled consumption is clearly

41Depending on the setting, ABCs refer to aerial bundled cables, aerial bunched cables, aerial bunch
conductors, and aerial bundled conductors. We will use ABCs to refer to all of these.
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described in a recent report on India (Regy et al., 2021). Theft, which occurs through
meter tampering and illegal tapping into bare wires, is a major source of losses in India.
Incurring high losses annually, distribution companies then have difficulty paying for
investments in upgraded or new infrastructure or even for the electricity purchased from
generation companies.

The Indian central government recommended that distribution companies upgrade
their infrastructure in order to reduce losses, including the use of ABCs for high and
low tension distribution lines to reduce illegal direct hooking (Regy et al., 2021). This
recommendation is perhaps not surprising, given ABCs are believed to have contributed
to reductions in transmission and distribution losses within India between 2003 and 2016,
with installations documented in the states of Assam, Delhi, Gujarat, Jharkhand, Madhya
Pradesh, Maharashtra, Punjab, and Uttarkand (PricewaterhouseCoopers Pvt. Ltd., 2016).

Recent research has shown that ABCs can reduce losses due to both technical inef-
ficiencies and unbilled consumption. Abdollahi et al. (2020) conduct a simulation study
to closely measure the effects of ABCs on both technical inefficiencies and unbilled con-
sumption in Iran, where losses are high (18% of total energy input), like our setting, and
80% of those occur in the distribution system. Their study’s key findings are pertinent
to ours. First, before the installation of ABCs, the majority of total losses are due to un-
billed consumption (1970.03 kW, or 70%), rather than technical inefficiencies (844.28 kW,
or 30%). Second, unbilled consumption was essentially eliminated after the installation
of the ABCs, providing strong evidence to support the claim that ABCs make illegal tap-
ping impossible. Third, together, these findings mean that of the ABC-induced reduction
in total losses, 92% came from the elimination of unbilled consumption.

A2.4 Cable Installation in Pakistan

In its 2022 State of the Industry Report, Pakistan’s regulator recommended that the coun-
try’s electricity distribution companies install ABCs in order to reduce losses (NEPRA,
2022a). However, theft and ABCs were already major points of discussion for Pakistan’s
electricity sector. Unbilled consumption and potential ways to mitigate it featured promi-
nently in the country’s news. Below we provide highlights of news stories from Pakistan
covering ABCs.

• The Express Tribune. September 07, 2015. “Against tampering: Locals to have
theft-resistant electricity cables.” Article discussed how the Peshawar Electric Sup-
ply Company (PESCO) was replacing old wires with ABCs in an effort to reduce
electricity theft. https://tribune.com.pk/story/951944/against-tampering-locals-
to-have-theft-resistant-electricity-cables

• Such TV. November 24, 2018. “New system being introduced to stop power theft:
Omar Ayub.” In a television interview, Pakistan’s Minister of Energy explained
that ABC installation would help control electricity theft and announce plans for an
Asian Development Bank funded effort to install ABCs within the distribution net-
work of IESCO, PESCO, and LESCO. https://www.suchtv.pk/pakistan/general/item/
77702-new-system-being-introduced-to-stop-power-theft-omar-ayub.html
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• Pakistan Today. July 27, 2020. “Segmented load-shedding in line with National
Power Policy: K-Electric.” The article described Karachi Electric’s efforts to reduce
electricity theft through the installation of ABCs. https://profit.pakistantoday.com.pk
/2020/07/27/segmented-load-shedding-in-line-with-national-power-policy-k-electric/

• Business Recorder. November 30, 2020. “K-Electric to invest $1.5 billion in energy
infrastructure.” Article reports that the utility already invested 55 billion rupees into
its distribution network in FY 2020, converting to ABCs and “significantly reducing
transmission and distribution losses, and load shedding.”
https://www.brecorder.com/news/40036286

• The Daily Times. December 19, 2020. “K-Electric requests consumers’ understand-
ing as it conducts annual preventive maintenance.” Article reported that installation
of ABCs is a regular part of Karachi Electric’s work to upgrade the network and re-
duce illegal kundas in Karachi. https://dailytimes.com.pk/703407/k-electric-requests-
consumers-understanding-as-it-conducts-annual-preventive-maintenance/

• The News International. November 23, 2022. “KE says transmission, distribution
losses reduced to 15pc in FY22.” Article reported on discussion of Karachi Electric’s
Chief Financial Officer and the company’s efforts “to enhance its infrastructure and
continue efforts to reduce distribution losses by rolling out aerial bundled cables on
its network.” https://www.thenews.com.pk/print/1012680-ke-says-transmission-
distribution-losses-reduced-to-15pc-in-fy22
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B Maps

(a) 2016m6

(b) 2018m12

(c) 2020m12

Figure B1: Example of Theft-Resistant Cable Installation at Transformers

Notes: The figures show the location of transformers in one of the IBCs with high losses. Light-colored
circles indicate transformers without ABCs, and darker-colored circles indicate transformers that have been
converted to ABCs.
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C Additional Figures and Tables
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Figure C1: Dynamic Impacts on Losses and Revenue Recovery – Alternative Estimators

Notes: We use alternative estimators to address concerns on the staggered DID setting. Panel (a) plots
the event study estimates following the approach suggested by Callaway and Sant’Anna (2021). Panel (b)
plots the event study estimates following the approach suggested by Sun and Abraham (2021). The figure
shows the coefficients and their 95% confidence intervals. Data are at the feeder level on a monthly basis.
Regressions include IBC-by-month and feeder fixed effects. Standard errors are clustered at the feeder level.
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Figure C2: Placebo Tests with High-Loss Feeder Lines

Notes: The figure plots the distribution of coefficient estimates from the placebo test. For these analyses,
we restrict our sample to feeder lines that belong to the high-loss category at the baseline. We first shuffle
ABC installation across these feeder lines 1000 times. For each pseudo ABC installation status, we estimate
the impacts on losses and revenue recovery. The blue bars show the histogram of the coefficients for the
ABC indicator. The vertical dashed black lines represent the estimates based on the actual ABC installation
status.

SI-10



-200

0

200

400

600

≤-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19 ≥21
Month Relative to ABC Conversion

Unadjusted

-500

0

500

1000

1500

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19 21

Month Relative to ABC Conversion

Callaway & Sant'Anna (2021)

-200

0

200

400

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19 21
Month Relative to ABC Conversion

Sun & Abraham (2021)

Figure C3: Dynamic Impacts on the Number of Consumers

Notes: The figure shows the coefficients and their 95% confidence intervals from event-study regressions
estimating the impact of ABCs on the number of consumers measured in inverse hyperbolic sines. The
top panel presents estimates from unadjusted event-study model. The middle panel presents estimates
following the approach suggested by Callaway and Sant’Anna (2021). The bottom panel plots the estimates
following the approach suggested by Sun and Abraham (2021). Data are at the feeder-line level. Regressions
include IBC-by-month and feeder-line fixed effects. Standard errors are clustered at the feeder-line level.
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Figure C4: Dynamic Impacts on Customer Behavior

Notes: The figure plots coefficients and their 95% confidence intervals from the event-study estimates of the
ABC effect. We use the standard event-study framework without any adjustments. The outcome variables
include billed electricity units (in inverse hyperbolic sine), billed electricity amount (in inverse hyperbolic
sine), an indicator for whether the customer does not pay electricity bills on time, the proportion of payment
relative to the total due to KE (payment ratio), an indicator for whether there are irregular bills in that
month, and an indicator for whether there is theft in that month. All regressions include customer, month,
and transformer-by-month-of-year fixed effects. Standard errors are clustered at the transformer level.
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Figure C5: Dynamic Impacts on Customer Behavior – Callaway and Sant’Anna (2021)

Notes: The figure plots coefficients and their 95% confidence intervals from the event-study estimates of
the ABC effect. We use the estimator proposed by Callaway and Sant’Anna (2021) to address the concerns
on staggered DID setting. The outcome variables include billed electricity units (in inverse hyperbolic
sine), billed electricity amount (in inverse hyperbolic sine), an indicator for whether the customer does not
pay electricity bills on time, the proportion of payment relative to the total due to KE (payment ratio), an
indicator for whether there are irregular bills in that month, and an indicator for whether there are thefts
in that month. All regressions include customer, month, and transformer-by-month-of-year fixed effects.
Standard errors are clustered at the transformer level.
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Figure C6: Dynamic Impacts on Customer Behavior – Sun and Abraham (2021)

Notes: The figure plots coefficients and their 95% confidence intervals from the event-study estimates of the
ABC effect. We use the estimator proposed by Sun and Abraham (2021) to address the concerns on stag-
gered DID setting. The outcome variables include billed electricity units (in inverse hyperbolic sine), billed
electricity amount (in inverse hyperbolic sine), an indicator for whether the customer does not pay electric-
ity bills on time, the proportion of payment relative to the total due to KE (payment ratio), an indicator for
whether there are irregular bills in that month, and an indicator for whether there are thefts in that month.
All regressions include customer, month, and transformer-by-month-of-year fixed effects. Standard errors
are clustered at the transformer level.
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Figure C7: Distribution of Billed Units by Customer Type

Notes: Data are at the customer-month level. The top panels focus on the surveyed customers in our study
sample. The bottom panel uses all the residential customers in high-loss IBCs. The left panels plot the
histogram of monthly billed units. The right panels plot the histogram of each customer’s average monthly
billed units over the sample period. New customers are defined as those who contracted with KE within 6
months of the ABC conversion at the corresponding transformers. The remaining customers are defined as
incumbent formal customers. When plotting these figures, we restrict to transformers that ultimately have
ABC conversions during our sample and focus on the post-ABC period.
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Table C1: Summary Statistics of Feeder-Line Characteristics

Never
ABC

ABC
Treated

Early
ABC

Late ABC Treated
vs Never

Early vs
Never

Late vs
Never

Late vs
Early

(1) (2) (3) (4) (2) - (1) (3) - (1) (4) - (1) (4) - (3)

Quantity Sent Out (GWh) 0.871 1.124 1.052 1.164 0.274*** 0.226*** 0.299*** 0.053
(0.661) (0.519) (0.505) (0.522) (0.038) (0.043) (0.051) (0.063)

Quantity Billed (GWh) 0.676 0.657 0.636 0.669 -0.013 -0.016 -0.010 0.009
(0.532) (0.319) (0.386) (0.274) (0.025) (0.040) (0.029) (0.051)

Loss 0.218 0.387 0.377 0.392 0.181*** 0.176*** 0.183*** 0.006
(0.176) (0.169) (0.169) (0.170) (0.011) (0.013) (0.014) (0.019)

Gross Billing (1000 K) 12.209 9.359 8.605 9.762 -1.731*** -1.773*** -1.679*** 0.774
(13.010) (4.488) (3.886) (4.731) (0.353) (0.376) (0.462) (0.544)

Net Credit (1000 K) 10.362 5.957 5.857 6.011 -3.864*** -3.418*** -4.069*** -0.300
(11.500) (3.707) (2.978) (4.044) (0.340) (0.317) (0.446) (0.441)

RR 0.842 0.650 0.694 0.626 -0.224*** -0.186*** -0.244*** -0.077**
(0.208) (0.241) (0.189) (0.262) (0.021) (0.018) (0.029) (0.034)

# Residential Customers 1,016.799 2,131.007 1,953.410 2,225.317 1,141.139***979.298*** 1,222.346*** 170.626
(1,276.399) (953.663) (907.021) (964.578) (87.221) (93.069) (117.469) (136.531)

# Total Customers 1,272.772 2,504.729 2,334.234 2,595.268 1,255.414***1,099.871***1,333.457*** 158.008
(1,464.534) (1,016.470) (1,010.206) (1,008.419) (93.767) (104.769) (124.769) (147.739)

Share of Residential Customers 0.577 0.839 0.829 0.845 0.260*** 0.246*** 0.267*** 0.011
(0.382) (0.108) (0.120) (0.101) (0.013) (0.015) (0.016) (0.017)

# Transformers 16.735 18.255 19.296 17.688 1.507 2.562** 0.953 -1.686
(14.306) (9.694) (11.707) (8.346) (0.929) (1.269) (1.170) (1.609)

# Feeder Lines 1509 194 124 70

Notes: Data are at the feeder-line level. To calculate these baseline statistics, we restrict the sample to the pre-ABC period for each treated feeder line. When
calculating the difference in means, we absorb month fixed effects to capture seasonality. There are 1,888 feeder lines throughout the study period. For ease
of interpretation, we exclude from all columns the 185 feeder lines that had ABCs installed in or before January 2018, as they were were in the midst of
undergoing treatment during the data period. Column (1) shows feeder lines that never get ABC conversion during our whole sample period. Column (2)
shows feeder lines that have ABC conversion after January 2018. Column (3) shows feeder lines that have ABC conversion between February 2018 and June
2019. Column (4) shows feeder lines that had ABC conversion slightly later, after June 2019. In the first four columns, the values in parentheses are standard
deviations. In the last four columns, the values in parentheses are standard errors, clustered at the feeder-line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C2: Summary Statistics of General Household Characteristics

Variable Mean SD Min Max

Household Characteristics
Number of Adults 4.34 2.84 1 46
Number of Children 2.66 2.35 0 27
Total Number of People 7.00 4.06 1 47
Years in the Neighborhood 22.37 18.53 1 80
% Housing Owners 0.79 0.41 0 1
% Housing Renters 0.21 0.41 0 1
House Characteristics
Number of Rooms 2.71 1.33 1 12
% Pucca 0.76 0.42 0 1
% Katcha 0.19 0.39 0 1
% Both Pucca and Katcha 0.05 0.21 0 1
Connectivity
% Cell Phone 0.60 0.49 0 1
% Mobile Internet 0.60 0.49 0 1
Expenditures
Total Monthly Expenditures 33,426.02 25,095.02 0 418,300
Expenditure on Food 18,543.54 13,283.91 0 300,000
Expenditure on Electricity 5,001.27 8,851.94 0 250,000
Expenditure on Water 983.88 1,939.43 0 40,000
Expenditure on House Rent 1,759.76 4,427.53 0 90,000
Expenditure on Other Rent 257.70 1,259.82 0 22,000
Expenditure on Other Utilities 250.19 878.24 0 25,000
Expenditure on Durables 80.57 1,450.02 0 50,000
Expenditure on Transportation 2,221.53 4,502.02 0 90,000
Expenditure on Other Recurring 175.48 1,097.79 0 30,000
Expenditure on Healthcare 2,747.38 11,354.45 0 350,000
Expenditure on Education 2,557.88 6,811.91 0 200,000
Asset Ownership and Financial Accounts
% Own Vehicles 0.04 0.19 0 1
% Own Motorcycles 0.59 0.49 0 1
% Own Land 0.05 0.22 0 1
% Financial Account 0.32 0.47 0 1

Notes: Statistics are calculated from our household survey conducted in 2021. Pucca houses are
made of solid materials, such as brick and cement. Katcha houses are made of more temporary
materials.
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Table C3: Summary of Electricity-Related Household Characteristics and Reports

Variable Mean SD Min Max

Electricity Connection Details
Years with KE Connection 20.98 19.04 1 80
% Households Paying KE for Electricity 0.87 0.33 0 1
% Households Paying Other Entity for Electricity 0.09 0.28 0 1
% Meter Installed 0.96 0.19 0 1
% Meter Calculating Peak Consumption 0.19 0.39 0 1
% Households Checking Meter Regularly 0.06 0.23 0 1
% Share Meter with Other Households 0.01 0.11 0 1
Summer Monthly Electricity Expense (PKR) 5,635.48 6,988.37 500 200,000
Winter Monthly Electricity Expense (PKR) 3,885.55 7,812.55 300 250,000
Lighting Sources
% Use Candle 0.12 0.32 0 1
% Use Lantern 0.01 0.09 0 1
% Use Kerosene Oil 0.01 0.11 0 1
% Use Battery Light 0.34 0.47 0 1
% Use Solar Powered Light 0.14 0.35 0 1
% Use Generator 0.06 0.23 0 1
% Use Mobile Light/Torch 0.06 0.24 0 1
Electricity Service Quality
Summer Outage/Load Shedding Hours per Day 7.63 2.72 0 24
Winter Outage/Load Shedding Hours per Day 5.62 3.08 0 24
% Experience Appliance Damages 0.27 0.45 0 1
% Use Device to Prevent Voltage Fluctuation 0.38 0.49 0 1
% Report Electricity Shortage 0.46 0.50 0 1
% Report Voltage Fluctuation 0.12 0.33 0 1
% Report Unplanned Load Shedding 0.73 0.45 0 1
% Report High Expense Electricity 0.72 0.45 0 1
% Report Frequent Billing Errors 0.28 0.45 0 1
Appliance Ownership
% Own Refrigerator 0.75 0.43 0 1
% Own Microwave Oven 0.01 0.10 0 1
% Own Washing Machine 0.72 0.45 0 1
% Own Air Conditioner 0.03 0.16 0 1
% Own TV 0.48 0.50 0 1
% Own Electric Water Pump 0.69 0.46 0 1
Total Number of Appliances 7.41 3.01 0 37
Light Bulb Types
% Use Incandescent 0.01 0.07 0 1
% Use CFLs 0.26 0.44 0 1
% Use LEDs 0.84 0.36 0 1

Notes: Statistics are calculated from our household survey conducted in 2021.

SI-18



Table C4: Effect of Theft-Resistant Cables on Losses and Revenue Recovery –
Alternative Clustering

Loss Revenue Recovery

Coefficient Estimate -0.082 0.052

S.E. Clustered by:
Feeder (0.009)*** (0.009)***
IBC (0.017)*** (0.013)***
Feeder & Calendar Month (0.013)*** (0.010)***
IBC & Calendar Month (0.018)*** (0.013)***

Observations 47,575 37,353
Feeder FE ✓ ✓
IBC-Month FE ✓ ✓

Notes: We report the coefficient estimates using the model corresponding to Columns 1 and 2 in
Table 1 but with alternative clustering standard errors. The first row replicates the coefficient esti-
mates of the ABC dummy. In the following rows, we present the standard errors clustered by (i)
feeder-lines; (ii) IBC regions; (iii) feeder-lines and calendar month; and (iv) IBC region and calen-
dar month. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C5: Nonlinear Effects of Theft-Resistant Cables

Monthly Quarterly

Loss Revenue
Recovery

Loss Revenue
Recovery

(1) (2) (3) (4)

ABC Ratio −0.159*** 0.176*** −0.130*** 0.185***
(0.030) (0.039) (0.035) (0.041)

ABC Ratio2 −0.019 −0.092** −0.048 −0.086**
(0.032) (0.042) (0.037) (0.043)

Control Mean 0.229 0.828 0.210 0.855
Observations 47,575 37,353 17,626 14,664
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓
IBC-Quarter FE ✓ ✓

Notes: Data are at the feeder-line level. ABC ratio is defined as the number of trans-
formers with ABCs installed divided by the number of total transformers in a feeder-
line. All regressions include feeder-line and IBC-by-month/quarter fixed effects.
Standard errors in parentheses are clustered at the feeder-line level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table C6: Heterogeneous Effects by High/Low-Loss feeder-lines

Monthly Quarterly

Loss Revenue
Recovery

Loss Revenue
Recovery

(1) (2) (3) (4)

ABC −0.024* −0.029*** −0.019 −0.006
(0.014) (0.010) (0.014) (0.009)

ABC × Medium Loss −0.064*** −0.061***
(0.016) (0.017)

ABC × High Loss −0.135*** −0.143***
(0.030) (0.032)

ABC × Medium Revenue Recovery 0.102*** 0.083***
(0.014) (0.013)

ABC × Low Revenue Recovery 0.184*** 0.164***
(0.022) (0.025)

Control Mean 0.230 0.830 0.212 0.858
Observations 43,041 35,897 15,914 14,008
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓
IBC-Quarter FE ✓ ✓

Notes: Data are at the feeder-line level. ABC is a binary indicator that equals 1 when the feeder-line has
transformers with ABCs installed, and equals zero otherwise. We classify the initial losses or revenue re-
covery rate (the monthly average losses or revenue recovery rate between January 2018 and June 2018)
into three categories by percentile: low, medium, and high. The ABC indicator is then interacted with
binary indicators for whether the feeder-line falls into certain loss or revenue recovery categories. All re-
gressions include feeder-line and IBC-by-month fixed effects. Standard errors in parentheses are clustered
at the feeder-line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C7: Robustness Checks: Effects of Theft-Resistant Cables on Losses and Revenue Recovery

Loss Revenue Recovery

Coef. S.E. Coef. S.E.

A. Only Keep feeder-lines Neighboring Early Adopters
Drop Early Converted feeder-lines -0.113*** (0.015) 0.052*** (0.017)
Drop Early Converted or High-Loss feeder-lines -0.134*** (0.019) 0.084*** (0.024)

B. Only Keep feeder-lines Distant from Each Other
>100m Distance -0.081*** (0.009) 0.053*** (0.009)
>300m Distance -0.088*** (0.010) 0.053*** (0.010)
>500m Distance -0.095*** (0.017) 0.046*** (0.015)

C. Control ABC Status of Neighboring feeder-line Areas
<100m Distance -0.077*** (0.009) 0.053*** (0.009)
<300m Distance -0.082*** (0.009) 0.053*** (0.009)
<500m Distance -0.081*** (0.009) 0.052*** (0.009)

D. Alternative Estimators
Doubly-Robust Estimator -0.062*** (0.011) 0.029** (0.012)

E. Restricted Sample
Restrict to >6 Months from Initial ABC Conversion -0.120*** (0.012) 0.059*** (0.012)

F. Add Additional Fixed Effects
Feeder + IBC-by-Loss-Category-by-Month -0.066*** (0.008) 0.048*** (0.009)
Feeder-by-Calendar-Month + IBC-by-Month -0.092*** (0.010) 0.053*** (0.010)

Notes: Data are at the feeder-line level. The coefficient estimate in each cell is from a separate regression. In Panel A, we address the concern
of time-varying feeder-level changes, leveraging the utility company’s “ring-fencing” strategy. For each feeder-line area, we identify all its
neighboring feeder-line areas within the 1km buffer. Then, we drop the feeder-line area if it has the earliest ABC conversion among them.
The remaining feeder-lines are likely to be followers of ABC conversion according to the “ring-fencing” strategy. In addition to dropping the
earliest converters, we also drop the high-loss feeder-lines as an additional check. In Panel B, we only keep the feeder-lines with at least 100
m, 300 m, or 500 m distance from their nearest neighbors. In Panel C, we add controls for the ABC status of the neighboring feeder-line areas
located within 100 m, 300 m, or 500 m distance. In Panel D, we report the aggregated average treatment effect on the treated for all the tim-
ing groups across all periods using the doubly-robust DID estimator proposed by Callaway and Sant’Anna (2021). In Panel E, for the feeder
lines that ultimately have ABC conversion, we restrict their post-ABC period to at least more than 6 months from the initial ABC conversion.
In Panel F, we use combinations of more flexible fixed effects to capture potential confounding factors, including (i) feeder and IBC-by-loss-
category-by-month fixed effects; (ii) feeder-by-calendar-month and IBC-by-month fixed effects. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C8: Robustness Checks: CSR Camps

VARIABLES Loss Revenue Recovery

(1) (2) (3) (4)

Panel A: Exclude Feeder Line Areas with CSR Camps
ABC -0.076*** -0.088*** 0.064*** 0.057***

(0.012) (0.014) (0.013) (0.015)

Buffer 300m 500m 300m 500m
Observations 23,975 19,763 18,233 14,808

Panel B: Heterogeneous Effect by CSR Camping Areas
ABC -0.083*** -0.096*** 0.064*** 0.046***

(0.012) (0.014) (0.012) (0.014)
ABC × CSR300 0.003 -0.025

(0.017) (0.017)
ABC × CSR500 0.022 0.009

(0.018) (0.017)

Observations 47,575 47,575 37,353 37,353

Notes: Data are at the feeder-line level. Regression use data from KE on
the location of all corporate social responsibility (CSR) programs during
2018-2021, including business facilitation camps and health camps. In
Panel A, we exclude the feeder line areas if they have a transformer that
is located within 300 or 500 meters of a KE CSR camp location. In Panel
B, CSR300 and CSR500 are indicators for whether the feeder line has a
transformer that is located within 300 or 500 meters of a CSR camp lo-
cation, respectively. ABC is a binary indicator that equals 1 when the
feeder-line has transformers with ABCs installed, and equals zero oth-
erwise. All regressions include feeder-line and IBC-by-month fixed ef-
fects. Standard errors are clustered at the feeder-line level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table C9: Robustness Checks: Old Meter Replacements

Restrict to
Pre-OMR Period

Restrict to Non-OMR
Feeder Lines

Control OMR

Dep. Var. Loss RR Loss RR Loss RR Loss RR
(1) (2) (3) (4) (5) (6) (7) (8)

ABC -0.068*** 0.046*** -0.068*** 0.063*** -0.080*** 0.051*** -0.075*** 0.055***
(0.011) (0.011) (0.015) (0.015) (0.009) (0.009) (0.009) (0.010)

OMR -0.011 0.010 0.013 0.026*
(0.009) (0.010) (0.013) (0.014)

ABC × OMR -0.031** -0.022
(0.015) (0.015)

Observations 44,956 35,142 40,990 31,606 47,575 37,353 47,575 37,353
#Feeder 1,824 1,797 1,636 1,610 1,852 1,827 1,852 1,827
Feeder FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: Data are at the feeder-line level. ABC is a binary indicator that equals 1 when the feeder line has transformers with ABCs in-
stalled, and equals zero otherwise. OMR is a binary indicator that equals 1 for a feeder line after old meter replacements are initiated
for any transformer, and equals zero otherwise. In columns (1) and (2), for feeder lines that ultimately have old meter replacements, we
restrict the data to the period prior to the first meter replacement record. In columns (3) and (4), we exclude the feeder lines that ever
have transformers with old meter replacements. All regressions include feeder line and IBC-by-month fixed effects. Standard errors are
clustered at the feeder-line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C10: The Effects of Old Meter Replacements

Restrict to Pre-ABC Period Restrict to Post-ABC Period

Dep. Var. Loss RR Loss RR
(1) (2) (3) (4)

OMR -0.023 0.018 -0.010 0.016
(0.015) (0.019) (0.010) (0.010)

Observations 38,202 29,660 9,279 7,602
#Feeder 1,656 1,624 368 368
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓

Notes: Data are at the feeder-line level. OMR is a binary indicator that equals 1 for a feeder
line after old meter replacements are initiated for any transformer, and equals zero other-
wise. In columns (1) and (2), for feeder lines that ultimately have ABC conversion during
our sample, we restrict the data to the pre-ABC period. In columns (3) and (4), we restrict
the data to feeder lines that ever have ABC conversion and to their post-ABC period. All re-
gressions include feeder line and IBC-by-month fixed effects. Standard errors are clustered
at the feeder-line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C11: Robustness Checks: Project Sarbulandi

VARIABLES Loss Revenue
Recovery

(1) (2)

A. Exclude Phase-1 Sarbulandi IBCs -0.073*** 0.028**
(0.011) (0.012)

B. Exclude the Post Period for Phase-1 Sarbulandi IBCs -0.071*** 0.045***
(0.009) (0.009)

C. Restrict to the Period Before November 2019 -0.065*** 0.060***
(0.010) (0.010)

D. Only Keep Phase-2 Sarbulandi IBCs -0.082*** 0.028**
(0.012) (0.012)

E. Only Keep Phase-1 Sarbulandi IBCs -0.089*** 0.075***
(0.013) (0.014)

Notes: Data are at the feeder-line level. Each cell reports the coefficient estimate of the ABC indica-
tor and the corresponding standard error from a separate regression. Panel A excludes feeder line
areas that belong to Phase-1 Sarbulandi IBCs. Panel B excludes the post-Sarbulandi period (i.e., post
November 2019) for Phase-1 IBCs. Panel C restrics the sample to the period before November 2019
when the project Sarbulandi hasn’t started yet. Panel D only includes feeder lines that belong to
Phase-2 Sarbulandi IBCs. Panel E only includes feeder lines that belong to Phase-1 Sarbulandi IBCs.
All regressions include feeder-line and IBC-by-month fixed effects. Standard errors are clustered at
the feeder-line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C12: Effect of Theft-Resistant Cables on Consumer Numbers - Alternative
Specifications

VARIABLES Total Agricultural Bulk Commercial Industry Residential
(1) (2) (3) (4) (5) (6)

A. Log Measure
ABC 0.066*** -0.002 -0.003 -0.018 -0.010 0.065**

(0.022) (0.015) (0.005) (0.028) (0.030) (0.026)

B. Raw Level Winsorized at the 99th Percentile
ABC 169.041*** -0.041 -0.005 2.333 -0.484 166.851***

(40.694) (0.079) (0.007) (5.568) (0.745) (37.175)

C. Inverse Hyperbolic Sine
ABC 0.065*** −0.002 −0.004 −0.023 −0.009 0.064**

(0.022) (0.019) (0.006) (0.029) (0.035) (0.028)

D. Log Measure
ABC Ratio 0.140*** 0.004 -0.006 -0.043 -0.018 0.161***

(0.032) (0.007) (0.006) (0.043) (0.045) (0.040)

E. Raw Level Winsorized at the 99th Percentile
ABC Ratio 444.990*** -0.054 -0.009 4.269 -1.325 439.582***

(57.608) (0.080) (0.009) (7.389) (1.151) (52.419)

F. Inverse Hyperbolic Sine
ABC Ratio 0.138*** 0.005 −0.008 −0.053 −0.015 0.159***

(0.033) (0.009) (0.008) (0.047) (0.052) (0.043)

Outcome Mean 1612.16 1.26 0.09 268.35 11.93 1330.54
Observations 67,602 67,602 67,602 67,602 67,602 67,602

Notes: Data are at the feeder-line level. The outcome variables are the number of customers belonging to a spe-
cific category. Panel A and D use log measures, i.e., the logarithm of one plus the outcome variable. Panel B and
E use raw levels winsorized at the 99th percentile. Panel C and F use inverse hyperbolic sines. ABC is a binary
indicator that equals 1 when the feeder-line has transformers with ABCs installed, and equals zero otherwise.
ABC Ratio is defined as the number of transformers with ABCs installed divided by the total number of trans-
formers in a feeder-line. All regressions include feeder-line and IBC-by-month fixed effects. Standard errors are
clustered at the feeder-line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C13: Effect of Theft-Resistant Cables on Load Shedding –
Inverse Hyperbolic Sine

IHS(Average Hours of Load Shedding Per Day)

Whole Sample High-Loss IBCs

(1) (2) (3) (4)

ABC -0.107*** -0.111***
(0.029) (0.028)

ABC Ratio -0.264*** -0.279***
(0.038) (0.037)

Outcome Mean 4.068 4.068 5.994 5.994
Observations 34,997 34,997 12,298 12,298
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓

Notes: Data are at the feeder-line level on a monthly basis. The outcome variable is
average hours of load shedding per day in a month (measured in inverse hyperbolic
sine). ABC is a binary indicator that equals 1 when the feeder-line has transformers
with ABCs installed, and equals zero otherwise. ABC ratio is defined as the number
of transformers with ABCs installed divided by the number of total transformers in
a feeder-line. All regressions include feeder and IBC-by-month fixed effects. Stan-
dard errors in parentheses are clustered at the feeder-line level. * p < 0.1, ** p < 0.05,
*** p < 0.01.
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Table C14: Effect of Theft-Resistant Cables on Consumer Complaints –
Alternative Specifications

Variables All Bill
Complaints

Service
Requests

Technical
Complaints

(1) (2) (3) (4)

A. Log Measure, Total Number
ABC -0.088*** 0.200*** -0.102*** -0.232***

(0.023) (0.027) (0.037) (0.030)

B. Raw Levels Winsorized at the 99th Percentile, Total Number
ABC -23.080*** 2.518*** 4.073** -29.104***

(3.671) (0.335) (1.904) (3.094)

C. Inverse Hyperbolic Sine, Total Number
ABC −0.079*** 0.223*** −0.126*** −0.238***

(0.023) (0.031) (0.041) (0.032)

D. Log Measure, Per-Capita Number
ABC -0.014*** 0.001*** 0.002** -0.017***

(0.002) (0.000) (0.001) (0.002)

E. Raw Levels Winsorized at the 99th Percentile, Per-Capita Number
ABC -0.016*** 0.001*** 0.002** -0.019***

(0.002) (0.000) (0.001) (0.002)

F. Inverse Hyperbolic Sine, Per-Capita Number
ABC −0.016*** 0.001*** 0.002* −0.018***

(0.002) (0.000) (0.001) (0.002)

Observations 71,918 71,918 71,918 71,918

Notes: Data are at the feeder-line level. The outcome variable is the number of consumer complaints,
including all types of complaints, bill complaints, and service requests. Panel A and D use log mea-
sures, i.e., the logarithm of one plus the outcome variable. Panel B and E use raw levels winsorized
at the 99th percentile. Panel C and F use inverse hyperbolic sines. In Panel A, B and C, we use the
total number of complaints and add consumer number as a control variable. In Panel D, E, and
F, we use per-consumer measures, defined as the number of complaints divided by the number of
consumers covered by a feeder-line. All regressions include feeder-line and IBC-by-month fixed ef-
fects. Standard errors in parentheses are clustered at the feeder-line level. * p < 0.1, ** p < 0.05, ***
p < 0.01.

SI-29



Table C15: Quantile Regression Analysis – The Effect of Theft-Resistant Cables on Billed
Units

Dep. Var.: 10th 25th 50th 75th 90th
Billed Units (kWh) (1) (2) (3) (4) (5)

A. Add Customer FE
ABC 15.864*** 14.753*** 13.468*** 11.351*** 8.887***

(0.765) (0.724) (1.023) (1.802) (2.813)
cons 104.173*** 156.473*** 217.034*** 316.730*** 432.827***

(0.719) (0.483) (1.101) (1.557) (1.934)

B. No Customer FE
ABC 6.670*** 5.469*** 3.978*** 1.817 -1.167

(0.678) (0.633) (1.042) (1.882) (3.126)
cons 72.524*** 128.853*** 198.803*** 300.226*** 440.216***

(0.563) (0.401) (0.839) (1.378) (2.001)

Month FE ✓ ✓ ✓ ✓ ✓
Transformer-Month-of-Year FE ✓ ✓ ✓ ✓ ✓

Notes: Data are at the customer-by-month level. The sample includes all residential customers in high-loss IBCs.
The outcome variable is billed unit (in kWh). We report the results from quantile regressions where we estimate
the impacts of ABC on percentiles of billed units. Panel A adds customer fixed effects while Panel B does not. All
columns include month fixed effects and transformer-by-month-of-year fixed effects. Standard errors in paren-
theses are clustered at the transformer level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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D Utility Cost-Benefit Calculations

To put the magnitude of the benefits from ABCs into perspective, we perform cost-benefit
calculations from the utility’s perspective.

D1 Costs of ABCs (Theft-resistant Cables) to the Utility

We create four cost scenarios based on cost numbers provided by KE. These scenarios,
presented in Table D1, provide us with a range of the overall costs of ABC installation.
The costs that can potentially be included in our calculations are: the costs of purchasing
the ABC materials themselves, the labor costs for replacing the old bare wires with the
ABCs, the cost of purchasing – in addition to the ABC materials – new meters to replace
those old meters installed on the premises of the customer, and the additional labor cost
of replacing those old meters.

We include the costs of ABC materials alone in Scenario 1, whereas Scenario 2 cap-
tures both the ABCs materials and the labor (per transformer) required to install it. To
include only material costs (and not labor) is not unrealistic, as distribution system wires
must regularly be replaced at the end of their lifespan. Even in the absence of the up-
grade to ABCs, we can assume that technical work on the distribution system would still
be required and even bare wire need to be regularly replaced – perhaps with even greater
frequency than ABCs. Therefore, labor expenses are not necessarily specific to this infras-
tructure upgrade and could be omitted from the calculations of costs.

Table D1: Costs to the Utility for ABC Conversion, per Customer

Scenario Costs Included in Scenario Cost per Customer
(PKR) (USD)

1 ABC materials alone 16,389 109.3
2 ABC materials + labor 20,487 136.6
3 ABC materials + old meter replacement 24,916 166.1
4 ABC materials + old meter replacement + labor 33,630 224.2

Notes: Calculations based on cost data from KE. Conversions from PKR to USD are based on the ex-
change rate during the period of ABC installation studied, which was approximately 1 USD = 150
PKR.

In some cases – but not all – KE replaced the old meters with new meters at the time
when ABC conversion occurred. These new meters are the same technology as the old
ones that they replaced, just newer (i.e., they are not a more advanced technology, such
as prepaid meters or smart meters). The old meters were replaced if they were either
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damaged and not properly functioning or – because the ABC wires replace all the bare
wires in the distribution system, even those leading directly to the house – it was more
efficient for the utility to replace the meter at the same time that the ABC was installed.
For these reasons, we create two additional cost scenarios, one in which the old meters
are replaced at the time of the ABC conversion (Scenario 3) and one that additionally
includes the associated labor costs (Scenario 4). Given KE did not replace all old meters
during our study period, we know that Scenarios 3 and 4 are higher than expected for the
per customer cost of the ABC installation.

We assume the costs of ABCs are all upfront and therefore borne in year 0. Further, to
put these costs into units comparable to the benefits, we divide the costs per transformer
by the average number of consumers per transformer, with an average of 200 consumers
per transformer in our dataset. The resulting costs by scenario are in Table D1, in both
rupees and dollars.

D2 Benefits to the Utility

We estimate the benefits of ABC installation to the electricity utility using the change in
customer payments to KE following the conversion to ABCs. We do so using the results
from Table 4 on the increase in the monetary billed amount, which is 331,708,768 PKR per
month or 3,980,505,216 PKR per year. We convert this into a per-consumer benefit to the
utility, by dividing these total benefits per year by the number of consumers in high-loss
areas (694,743 consumers in high-loss areas). This provides us with an estimated benefit
to the utility of 5,729 PKR per consumer per year.

We must make assumptions regarding the expected lifespan of the ABC technology
when installed in Karachi. Globally, ABCs have an expected lifespan between 15 to 20
years. However, based on conversations with the electricity utility, we understand that
the ABCs may function for a shorter period (approximately ten years) when installed in
Pakistan, due to the local conditions. For this reason, we calculate the benefits for multiple
expected lifespans, ranging from 10 to 20 years.

We assume that the annual benefits are constant over these expected duration peri-
ods. Benefits could potentially decrease over time; however, we argue that the numbers
here provide a conservative estimate of the benefits to the utility, as we are not including
other known benefits, such as the reduction in payments to the utility’s field workers to
disconnect kundas.

We calculate the benefits using a range of discount rates: 8%, 10%, and 12%. We
determined these to be reasonable discount rate based on the Kibor Rates reported by the
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State Bank of Pakistan (www.sbp.org.pk) for this time period. Results are in Table D2,
reported in rupees and dollars in Panels A and B, respectively.

Table D2: Utility’s Discounted Benefits per Customer from ABC
Conversion

Variations in Assumed ABC Lifespan
discount rates 20 years 15 years 10 years

Panel A: In PKR
8% 56252.7 49041.2 38445.2
10% 48778.2 43578.8 35205.1
12% 42795.9 39022.6 32372.8

Panel B: In USD
8% 375.0 326.9 256.3
10% 325.2 290.5 234.7
12% 285.3 260.2 215.8

Notes: Calculations assume constant benefits over the assumed lifespan. Conversions
to USD are based on the exchange rate during the period of ABC installation studied,
which was approximately 1 USD = 150 PKR. Discount rates are based on Kibor Rates
documented by the State Bank of Pakistan for this time period.

These expected benefits are calculated using the estimated effects of KE’s cable con-
version, which they targeted to high loss feeder lines. We cannot expect that the instal-
lation of these theft-resistant cables on low loss feeders would have the same effects. As
such, a hypothetical systemwide conversion would not have the same benefits across all
of the utility’s territory.

D3 Comparing Costs and Benefits of Theft-Resistant Cables, by Ex-

pected Lifespans and Discount Rates

We compare the four cost scenarios presented in Table D1 with the benefits presented in
Table D2 for all four expected ABC lifespans and the three different discount rate. These
net present value per customer calculations are presented in rupees and dollars in Tables
D3 and D4, respectively.

Results in Panel C present perhaps the most realistic estimates of the net present
value of ABC installation, given the expected 10-year lifespan – is what KE expects for
ABCs installed in Karachi. In all but the most conservative scenario (i.e., 12% discount
rate with the scenario of ABC costs that we know is higher than those actually incurred
on average), the expected benefits outweigh the costs. These NPV calculations are likely
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to further understate the true tradeoff for the utility, given our benefits calculations only
include the additional billed value collected by the utility.

Table D3: Net Present Value per Consumer (PKR): Costs versus Benefits of Cable
Conversion

Cost Scenarios (PKR)

Variations in lifespans and
discount rates

1 2 3 4

Panel A: 20-year lifespan
8% 39863.5 35766.2 31337.1 22622.2
10% 32388.9 28291.6 23862.5 15147.6
12% 26406.7 22309.4 17880.3 9165.3

Panel B: 15-year lifespan
8% 32652.0 28554.7 24125.6 15410.7
10% 27189.5 23092.2 18663.1 9948.2
12% 22633.4 18536.1 14106.9 5392.0

Panel C: 10-year lifespan
8% 22055.9 17958.6 13529.5 4814.6
10% 18815.8 14718.5 10289.4 1574.5
12% 15983.5 11886.2 7457.1 -1257.8

Notes: All values are in PKR per customer. Discount rates are based on Kibor Rates documented by the
State Bank of Pakistan for this time period.
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Table D4: Net Present Value per Consumer (USD): Costs versus Benefits of Cable
Conversion

Cost Scenarios (USD)

Discount Rate for Benefits 1 2 3 4

Panel A: 20-year lifespan
8% 265.8 238.4 208.9 150.8
10% 215.9 188.6 159.1 101.0
12% 176.0 148.7 119.2 61.1

Panel B: 15-year lifespan
8% 217.7 190.4 160.8 102.7
10% 181.3 153.9 124.4 66.3
12% 150.9 123.6 94.0 35.9

Panel C: 10-year lifespan
8% 147.0 119.7 90.2 32.1
10% 125.4 98.1 68.6 10.5
12% 106.6 79.2 49.7 -8.4

Notes: All values are in USD per customer. Conversions to USD are based on the exchange rate during
the period of ABC installation studied, which was approximately 1 USD = 150 PKR. Discount rates are
based on Kibor Rates documented by the State Bank of Pakistan for this time period.
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E Theft Reduction and Consumer Surplus

E1 A Model of Cables’ Impacts on Consumers

At baseline, excluding non-payers from electricity consumption is difficult for the electric-
ity utility. The introduction of ABCs makes such exclusion more feasible. In this section,
we provide a simple model to conceptualize how consumer surplus may change with the
introduction of ABCs.

E1.1 The Setup

We consider a case in which there are two types of residential electricity consumers that
acquire electricity via the grid, F (formal consumers) and K (kunda users). Formal con-
sumers are those that registered with the the utility and are served by a formal connection
to the electrical grid. Formal consumers receive a bill from KE for electricity services con-
sumed, as captured by the electricity meter readings. Kunda users are not served by a
formal KE connection. Instead, they connect to the electrical grid through an informal
line, called a kunda. The kunda user pays a fixed monthly fee to the kunda provider for
their consumption, which is unmetered. The utility does not receive any of the fee from
the kunda user.42 Both formal consumers and kunda users can reside in the same neigh-
borhoods. All consumers within a neighborhood are served by the same feeder-line and
therefore are exposed to common feeder-line-level shocks, such as electricity rationing
(also known as load shedding).

Distribution losses are the difference between the quantity of electricity sent to a
feeder-line and the quantity billed to formal consumers, divided by the amount sent out.
High rates of losses translate into budgetary constraints for the utility. There is hetero-
geneity across feeder-lines in their composition of the two consumer types, resulting in
differences in rates of distribution losses as well. In general, high-loss feeder-lines have a
high proportion of kunda users, whereas lower-loss feeder-lines have a higher proportion
of formal consumers.

In addition to above-mentioned budget constraints, the utility operates under supply
constraints that necessitate electricity rationing. Given both the supply and budget con-
straints, KE allocates a larger quantity of electricity to the feeder-lines from which it will

42For ease of exposition, we simplify the scenario to these two consumer types. Although a formal con-
sumer could, on occasion, manipulate their meter or also use a kunda, so as not to pay the full cost of
their electricity services consumed, we note that mathematically it would be equivalent to ”split” such a
consumer into two distinct consumers, one with a ”formal demand” and one with a ”kunda demand.” Intu-
itively, this is similar to the construction of a demand curve with different willingness to pay for additional
units of a product under the law of diminishing marginal utility.
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recoup a higher rate of payment (i.e., the feeder-lines with lower losses). To operational-
ize this, KE assigns feeder-lines to load shedding categories. feeder-lines with greater
losses have rationing set higher, at qH (i.e., more hours of load shedding and fewer hours
of electricity provision). feeder-lines with lower losses have rationing set at a lower level,
qL (i.e., fewer hours of load shedding and more hours of electricity provision).

If ABCs increase the feasibility of excluding kunda users, then a feeder-line’s losses
would decrease after ABC installation. If rationing is tied to losses, then a decrease in a
feeder-line’s losses may result in less rationing, with a shift from qH to qL.

We focus on the partial equilibrium here. If focusing on the general equilibrium,
we would extend this to consider how a reduction in losses would alleviate the utility’s
budget constraints, thereby permitting it to make investments to relax supply constraints.

E1.2 Introduction of ABCs

ABCs have the potential to make electricity excludable, by limiting the feasibility of kun-
das and thereby shifting their users to formal connections. If the ABCs reduce the inci-
dence of kundas, then losses would be lower and potentially alleviate budget constraints.
The utility would be better off.

The effects of ABCs on consumer surplus, however, are less obvious. In the sub-
sections that follow, we describe ABCs’ effects on the surplus of formal consumers and
kunda users to elucidate how some consumers might be better off, while others are worse
off. In doing so, we illustrate several points. First, the effects on consumer surplus differ
across the two consumer types, formal consumers and kunda users. Second, the formal
consumers are no worse off than they were prior to ABC installation and potentially are
better off if electricity rationing on their feeder-line decreases. Third, the change in con-
sumer surplus for kunda users is ambiguous and depends on several factors, such as the
magnitude of the kunda fee, the extent to which rationing changes after ABC installation,
and whether rationing was binding before ABC installation.

E1.3 Formal Consumers: Change in Consumer Surplus

We illustrate the potential impacts of ABCs on the surplus of formal consumers in Figure
E1. We depict an individual demand curve of a representative formal consumer in two
scenarios: (i) one in which rationing is non-binding, as shown on the left-hand side, and
(ii) one in which electricity rationing is binding, as shown on the right-hand side. In both
scenarios the formal consumers’ consumption is measured by the electricity meter, and
they are charged the price per kWh of electricity, PF, as set by the government regulator.
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Before ABC Installation. When electricity rationing is non-binding, formal con-
sumers would consume up to quantity qF, where PF intersects with the demand curve.
Consumer surplus is the area lightly shaded above PF. If this is a high-loss feeder-line,
then KE rations electricity at qH, making that the maximum quantity any individual on
the feeder-line may consume. This does not affect consumer surplus when qF < qH (the
non-binding scenario). However, if rationing is binding at qH, then the surplus of the
formal consumer is constrained, as depicted by the lightly shaded area in the graph on
the right-hand side.

After ABC Installation. After installation of ABCs, the price remains constant at PF

for formal consumers. Consumption could remain constant, if rationing is not binding.
In these cases, we do not expect the formal consumers’ surplus to change. If rationing
was binding at qH, however, and then is relaxed from qH to qL, we expect the quantity
consumed to increase.

This shift in rationing from qH to qL is depicted in Figure E1. The consumer surplus
after ABC installation is depicted by the thin crossed pattern. The area in which the
thin crossed pattern does not overlap with the light shading is the change in consumer
surplus that results from the change in load shedding after ABC installation. Taking both
scenarios together, we expect that the ∆CS ≥ 0 for these formal consumers following
the introduction of ABCs. In other words, formal consumers are no worse off with the
introduction of ABCs.

Figure E1: Consumer Surplus of Formal Consumers

Notes: The graphs depict individual demand curves and two levels of electricity rationing, qH and qL.
Rationing is non-binding on the left-hand side (i) and binding on the right-hand side (ii). Price is constant
both before and after ABC installation, as consumers were always paying the tariff price set by the regulator,
PF.
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E1.4 Kunda Users: Change in Consumer Surplus

Here we conceptualize the change in consumer surplus for kunda users following the
installation of ABCs, illustrating that both the direction and the magnitude of the change
in surplus are ambiguous and depend on at least three factors: the magnitude of the
kunda fee, the extent to which rationing is binding, and the magnitude of the change in
rationing.

We present graphs depicting kunda user surplus in Figure E2. As in the case of the
formal users, there can be electricity rationing, which may or may not be binding. Again,
it is helpful to depict both scenarios: (i) one in which rationing is non-binding, as shown
in the graph on the left-hand side, and (ii) one in which electricity rationing is binding, as
shown in the graph on the right-hand side.

Figure E2: Consumer Surplus of Kunda Users

Notes: The graphs depict individual demand curves, with two levels of electricity rationing, qH and qL.
Rationing is non-binding on the left-hand side (i) and binding on the right-hand side (ii). Before the instal-
lation of ABCs, this consumer is a kunda user and pays only a fixed monthly amount (the kunda fee) to the
kunda provider. After the installation of ABCs, kundas are no longer a viable channel to access electricity.
After ABC installation, if the consumer wants to use electricity services from the grid, they must pay the
regulator-set tariff price, PF.

Before ABC Installation. Kunda users connect to the electrical grid through infor-
mal connections. These consumers are not paying the state-determined tariff price, PF.
Instead, they pay a fixed monthly fee to the entity providing the connection, a kunda fee,
which is represented as a white block in both graphs. This fixed fee means that there is
a zero marginal cost for additional units consumed. If electricity rationing is not binding
(qK < qH), the kunda user would consume to quantity qK. If rationing is binding at qH,
then consumption will be limited at that quantity.
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In both scenarios, the consumer surplus is the lightly shaded area below the indi-
vidual demand curve minus the amount of the monthly kunda fee, as depicted by the
unshaded block. In both scenarios – binding and non-binding – before ABC installation,
the consumer surplus will depend on the magnitude of the kunda fee set by informal
providers. From focus groups of households in high-loss areas of Karachi during fall
2021, we understand kunda fees are prevalent in this setting and have information on
their magnitude as well. We assume that the kunda fee is less than the expected cost
of consuming electricity services via a formal connection; otherwise kunda users would
prefer a formal connection.

After ABC Installation. Once ABCs are installed, kundas are no longer feasible.
The kunda user must shift to paying the state-determined tariff price, PF, if they want to
consume electricity services.

When rationing is non-binding (as on the left), the change from a fixed fee to the state
tariff, PF, will result in a decrease in consumption from qK to qF. The consumer surplus
is now just the area above PF, as shaded by the thin crossed pattern. With rationing
non-binding, both qK and qF are less than qH. If rationing decreases and provision of
electricity services increases to qL, these individuals do not gain any surplus. Thus, in
this scenario the kunda users are unambiguously worse off following ABC installation.
However, this change in consumer surplus may not be as large as expected, depending
on the magnitude of the kunda fee previously paid.

When rationing is binding (as on the right), the direction of the change in consumer
surplus due to ABC installation is ambiguous. Kunda users could have consumed only to
qH, the quantity set by rationing. These individuals are forced to pay the formal tariff rate
and lose the consumer surplus represented by the area below Pf and up to qH, minus the
kunda fee. Again, the magnitude of this change in consumer surplus might not be as large
as expected and depends on the amount previously paid as a kunda fee. Additionally, if
a reduction in losses means that rationing is relaxed from qH to qL, then these individuals
can increase their consumption to that quantity. As a result, their surplus may increase.
The relative magnitudes of the two changes – the surplus decrease resulting from the price
change and the surplus increase resulting from additional hours of electricity provision
– will determine to what extent these kunda users are worse off or better off than before
ABC installation.
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E2 Consumer Surplus Calculation

We now present some exploratory results quantifying the welfare impacts of ABC instal-
lation by measuring the costs to the subsidized consumers and the change in government
expenditures. We restrict our analysis to high-loss IBCs and feeder-lines that ultimately
had ABCs installed.

ABCs make illegal electricity connections or theft more difficult. As is shown in pre-
vious sections, there is an increase in consumers’ billed amount and payment ratio after
the ABC installation. Hence, we characterize the ABC installation as an informal tax on
consumers for their electricity usage. The change in billed amount and payment ratio can
be approximated by an average price increase faced by consumers in feeder-lines with
ABCs installed. Therefore, for tractability, we consider the tax as a per-unit tax.

To measure the change in consumer surplus, we estimate price elasticities of electric-
ity demand. We leverage the monthly feeder-level data on electricity sent out, bill pay-
ment, and the number of customers to conduct the estimation. For each feeder-line, we
calculate the average electricity consumption per consumer (yit) as the total consumption
divided by the average number of customers in the period after ABC installation.43

The average electricity price (pit) faced by consumers is measured as the total expen-
diture on electricity usage divided by the total consumption. Consumers’ expenditures
on electricity usage include the amount they pay to KE (for legal connections).44

With the calculated average electricity consumption and average electricity price, we
estimate the price elasticity of demand using the two-stage least squares approach. For
feeder-line i in IBC region j in month t, the first- and second-stage regressions are:

ln(pijt) = γABCit + αi + δjt + εijt

ln(yijt) = β ln( p̂ijt) + ϕi + κjt + uijt.

In the above equations, γ captures the change in electricity price after the ABC instal-
lation, and β captures the price elasticity of electricity demand. With these parameters,
we can calculate the change in consumer surplus as a result of the average price increase
induced by the ABC installation.

ABC installation satisfies the exclusion restriction under the assumption that it does
not affect average consumption except through its effect on average prices. However,

43The total electricity consumption at each feeder-line is measured by the electricity sent out ×
(1−technical loss rate). Here, we assume an 8% technical loss rate based on NEPRA’s estimation. Implicitly,
we assume a balance between the electricity supply and demand.

44As kunda pricing is considered a lump-sum transfer, we ignore kunda payments for the purposes of
calculating the average price.
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given our empirical results that ABCs lead to formalization (new customers joining) and
also reduced rationing (due to reduction in load shedding), the aggregated feeder level
quantities consumed will be affected via channels other than the increase in price. Thus,
our calculations should be interpreted as exploratory calculations.

The changes in consumer surplus calculated above contain within them the lump-
sum transfers made to kunda operators before ABC installation. To account for this, we
estimate the amount of transfer using results from our household survey. According to
the household survey, we assume the proportion of households using kundas is 10% and
test different kunda price assumptions ranging from zero to 3,500 PKR per month. Then,
we calculate the total payment for kunda usage by multiplying the kunda price by the
number of households using kundas in each feeder-line. We assume consumers no longer
pay for a kunda after ABC installation since illegal connections are terminated.

The change in government subsidies is calculated by multiplying the change in elec-
tricity consumption per customer with the average subsidy rate (i.e., 4.7 PKR according
to KE) and the total number of customers.

Table E1 presents the results from these calculations under a range of assumptions
for kunda prices. We see that consumer surplus decreases following the introduction
of ABCs in all scenarios presented; however, the extent to which it decreases is highly
dependent on kunda prices. For the range of plausible kunda prices, calculations indicate
that consumer surplus reductions are between 2.21 and 4.55 USD per month. Further,
although we find that in aggregate, consumer surplus falls, we note that service quality
improvements are not accounted for in our surplus calculations.
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Table E1: Effect of Theft-Resistant Cables on Consumer Surplus and Government
Subsidies

Kunda Fee ∆CS per Consumer ∆CS Total ∆Kunda Revenue ∆Subsidy
(1) (2) (3) (4) (5)

0 −682 −473,548,704 0 −133,894,840
750 −607 −421,442,912 −52,105,772 −133,894,840

1,500 −532 −369,337,152 −104,211,544 −133,894,840
2,000 −482 −334,599,968 −138,948,720 −133,894,840
2,500 −432 −299,862,784 −173,685,904 −133,894,840
3,500 −332 −230,388,416 −243,160,272 −133,894,840

Notes: All values are in Pakistani rupees per month. The exchange rate during this period was approxi-
mately 1 USD = 150 PKR. Kunda prices are based on prices reported in our focus groups in fall 2021. The
change in total consumer surplus (∆CS) is calculated by multiplying the per-customer change (column
2) by the number of customers in high-loss areas following the ABC intervention (694,743 customers).
∆Subsidy is measured by the change in government subsidies for electricity. Details for the calculation
are described in Section E2.
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F Implications for Climate Change Mitigation

Ex ante, the implications of the theft-resistant cable installation for electricity generation
and, therefore CO2 emissions, are not obvious. If anything, our results suggest that emis-
sions may increase as a result of infrastructure upgrades: the cables led to an increase in
both the total number of utility customers and billed units (kWh) per customer, which
together suggest an increase in electricity supplied and therefore electricity generated. In
a setting such as Pakistan, where 62% of electricity generation is via fossil fuels (NEPRA,
2021), an absolute increase in electricity generation likely means an increase in CO2 emis-
sions.

F1 Estimating Reductions in Emissions

In this section, we explore the implications of the infrastructure upgrade for climate
change mitigation through a multi-step process. First, we estimate the impacts of theft-
resistant cables on a proxy for electricity generation. Then, we calculate the marginal
changes in CO2 emissions per kWh change in electricity generated. Third, using the re-
sults of the prior two steps, we perform back-of-the-envelope calculations to estimate the
cables’ influence on CO2 emissions. Lastly, to provide some perspective, we compare
these estimates to the CO2 emissions from KE’s annual generation.

For the first step, given that generation occurs at a higher level than the intervention,
we use the quantity of electricity ”sent out” (kWh) to a feeder-line per month (i.e., the
quantity delivered to a feeder-line) as a proxy for generation per feeder-line.45 To esti-
mate the impact of the cables on electricity generation, we run regressions akin to those
described in Equation 1, but with the quantity sent out as the outcome variable. Results
in Table F7 show that theft-resistant cables led to a decrease in generation of 97,213.3
kWh per feeder-line per month (column 1). Using the inverse hyperbolic sine transfor-
mation of the quantity sent out, the intervention led to a 10.2% decrease in generation per
feeder-line per month (column 2). These results indicate that the cables reduced the total
electricity delivered and, therefore, the quantity generated.

To translate these generation reductions per month into avoided CO2 emissions, we
perform calculations of the estimated reduction in CO2 emissions per kWh reduction of
electricity generated, specific to Pakistan’s generation mix. Details of these calculations

45Electricity sent out includes billed consumption, unbilled consumption, and technical losses. A reduc-
tion in technical losses can be considered a pure welfare gain as CO2 emissions are averted but consumption
is not reduced. However, a reduction in billed or unbilled consumption might have welfare consequences
for consumers, which we are unable to capture in this calculation.
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are in Appendix F3. Broadly speaking, we create a mix of fuels that would most likely
be used to respond to changes in demand. This ”responsive mix” consists mostly of
generation attributed to fossil fuels, as these technologically allow for relatively easier
changes in production, compared with other sources. Our calculations indicate that the
reduction in CO2 per kWh reduction of electricity services consumed is 0.76 kg CO2/kWh
for our responsive mix.

Note that the above estimate is one of many alternatives. If we instead assume that
marginal production takes place solely through natural gas (the least carbon intensive
of Pakistan’s fossil fuel generation mix) or Residual Fuel Oil (the most carbon intensive
of the country’s fossil fuel generation mix), our estimates change to 0.46 kg CO2/kWh
and 1.06 kg CO2/kWh, respectively. Our responsive mix then is a conservative estimate,
between both bounds, though we provide estimates using all three.

After calculating the change in CO2 emissions per change in electricity generated by
generation fuel type, we compare those calculations to Pakistan’s annual CO2 emissions
to put those numbers in perspective. Results are in Table F8. In column 1, we present
the result of multiplying each of these estimated changes in CO2 per kWh change in
generation by fuel type times the estimated reduction in generation: 97,213.3 kWh per
feeder-line per month (from column 1 of Table F7). This provides us with a range of esti-
mated reductions in CO2 emissions per year per feeder-line, by fuel source of the marginal
generator. We aggregate these numbers to all high-loss feeders (column 3) and compare
them with the estimated CO2 emissions from KE’s annual generation (column 4). This
reduction in CO2 emissions is non-trivial, equal to roughly 1.67% to 4.26% of KE’s annual
emissions due to generation.

F2 Comparing Theft-Resistant Cables with Other Interventions

To provide a sense of magnitude for these calculations, we compare the theft-resistant ca-
bles’ reductions in billed electricity consumption with the feasible reductions from other
technologies. To do so, we convert the theft-resistant cables’ feeder-line-level reductions
into residential consumer-level reductions. From our regressions, we know that the cables
reduced the quantity sent out by 97,213.3 kWh per feeder-line per month. We divide that
by the average number of residential consumers per feeder-line (1,685), which provides a
cable-induced reduction in electricity consumption of 57.7 kWh per residential customer
per month.

We perform back-of-the-envelope calculations for the electricity savings that would
occur if a household replaced three incandescent light bulbs with more efficient LED light
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bulbs. We perform these calculations based on Carranza and Meeks (2021), which re-
ports estimated reductions in electricity consumption due to a randomized energy effi-
cient light bulb intervention in Kyrgyzstan. First, we calculate the power reduction (kW)
per household from making this switch to LEDs.46 We then use that estimated reduction
to calculate the expected reduction in billed electricity (kWh) per month (Appendix Table
F10). Calculations by season place the per-household kWh reduction due to switching
three incandescent light bulbs to LEDs at between 24.3 and 44.55 kWh per month, which
is just below the 57.7 kWh per month of the theft-resistant cable-induced reduction calcu-
lated per consumer. Therefore, the reduction from theft-resistant cables is equivalent to
that of shifting to more efficient lighting.

F3 Calculations: Reductions in CO2 Emissions

In this section, we detail the steps involved in calculations pertaining to CO2 emissions
and the impacts of ABCs on them. First, we calculate the CO2 emissions produced for all
electricity generated and delivered to the service area covered by KE. Second, we estimate
the reduction in CO2 per kWh reduction of electricity services consumed, in order to
estimate the reduction in CO2 emissions resulting from the installation of ABCs. Lastly,
we use these two calculations together to compare the CO2 emissions reductions from
ABCs with the overall emissions from electricity purchased for the KE territory.

These calculations are conducted using information specific to Pakistan, from NEPRA’s
2021 Annual State of the Industry Report (NEPRA, 2021).

F3.1 CO2 Emissions for Electricity Purchased by Karachi Electric

We first calculate the CO2 emissions for all units purchased for KE’s service territory.
NEPRA’s report provides information on KE’s system generation, as well as the purchases
KE makes from the Central Power Purchasing Agency (CPPA-G). As shown in Table F1,
the generation mix differs across the two sources.

In FY 2020-21, KE procured a total of 19,486 GWh. This consisted of electricity gen-
erated within the KE system (13,116 GWh), as well as outside purchases from CPPA-G
(6,370 GWh) (NEPRA, 2021).

We calculate the average emissions intensity by generation fuel type. We assume
a plant efficiency and apply an emissions factor to estimate the kg of CO2 per MWh.

46We assume households would replace a 100 W incandescent bulb with a 100 W equivalent LED bulb.
Actual wattage listed for LEDs is typically 10 W for a 100 W equivalent bulb. Therefore for each incandes-
cent bulb replaced by an LED, there is a reduction of 90 W (100 W − 10 W). If the household has three light
bulbs and replaces all of them, the power reduction is 270 W or 0.27 kW.
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Table F1: Generation Mix for Pakistan, 2021

KE Generation CPPA-G Generation
Fuel Generation Percent Generation Percent

Quantity (GWh) (%) Quantity (GWh) (%)

Natural Gas 3,420.59 26.08 14,496.43 11.22
Liquefied Natural Gas 4,778 36.43 26,983.81 20.89
RFO 4,265 32.52 6,331.06 4.90
Coal 453 3.45 27,547.78 21.33
Hydro 0 0.00 38,800 30.04
Nuclear 0 0.00 10,871 8.42
Other Renewables (Solar, Wind) 200 1.52 4,122 3.19

Total 13,116.6 100% 129,152.1 100%

Source: Data in this table are from the 2021 NEPRA annual report (NEPRA, 2021).

We assume that liquefied natural gas is same as natural gas throughout the calculations.
We multiply the average heat rate for the power plants (natural gas/RFO/coal) power
plants in Pakistan, based on NEPRA’s reports (NEPRA, 2021), by the carbon intensity of
the fuel (natural gas/RFO/coal). These calculations allow us to account not only for the
generation fuel type, but also for the efficiency of plants operating in Pakistan.

These calculations of emissions intensities are shown in Table F2.

Table F2: Average Plant Heat Rates and Emissions Intensities of Fuels

Power Plants’ Carbon Intensity Emissions
Generation Average Heat Rate of Fuel Intensity
Fuel (MMBtu/MWh) (kg CO2/MMBtu) (kg CO2/MWh)

Natural Gas 8.7 52.9 460
RFO 14.1 75 1,060
Coal 97 12 1,170

We use these emissions intensities by fuel type, in conjunction with the generation
mix information in Table F1, to calculate the emissions for KE.

We first do so for the units KE purchased from its own generation basket. This is
quite straightforward to calculate as we know the quantities generated by fuel type in
the KE system generation. We multiply these by the emissions intensities from above.
Results are presented in Table F3.

Calculating the emissions from generation of the electricity purchased from CPPA-
G requires a few additional steps. First, we assume that the generation mix of the units
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Table F3: Emissions from KE System Electricity Generation

Generation Contribution to Contribution to Emissions Emissions Total
Fuel KE KE Intensity by Fuel

(GWh) (MWh) (kg CO2/MWh) (kg CO2)

Natural Gas 8,198.59 8,198,590 460 3,771,351,400
RFO 4,265.00 4,265,000 1060 4,520,900,000
Coal 453.00 453,000 1170 530,010,000

Sum 8,822,261,400

purchased from CPPA-G matches the proportions of CPPA-G’s overall generation. We
calculate those proportions, still assuming that liquefied natural gas is the same as natural
gas. Results are in Table F4.

Table F4: CPPA-G Generation

Generation CPPA-G Generation Proportion of
Fuel (GWh) CPPA-G’s Generation

Natural Gas 41,480.24 0.321
RFO 6,331.06 0.049
Coal 27,547.78 0.213
(Hydro) 38,800 0.300
(Nuclear) 10,871 0.084
(Renewables) 4,122 0.032

We know from the NEPRA report (NEPRA, 2021) that KE purchased 6,370 GWh from
CPPA-G in the 2020-21 fiscal year. We assume that these units that KE purchased from
CPPA-G were generated according to the overall CPPA-G mix shown in Table F4. With
this information, we can calculate the CO2 emissions from the electricity units that KE
purchased from CPPA-G. We multiply the proportions in the far right column of Table F4
with 6,370 GWh and get the results shown in Table F5.

We next sum the emissions from the electricity units purchased from KE (8,822,261,400
kg CO2) in Table F3 and the emissions from the electricity units purchased from CPPA-G
(2,748,566,671 kg CO2) in Table F5. We then convert this total of 11,570,828,071 kg CO2 to
tons, resulting in an estimated 12,754,639 tons of CO2 per year from the generation of the
electricity units purchased by KE.
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Table F5: Emissions from the Electricity Generation of KE’s Purchases from CPPA-G

Generation Contribution to Contribution to Emissions Emissions Total
Fuel KE KE Intensity by Fuel

(GWh) (MWh) (kg CO2/MWh) (kg CO2)

Natural Gas 1,964.94 1,964,940.16 460 903,872,472
RFO 299.91 299,905.55 1,060 317,899,879
Coal 1,304.95 1,304,952.41 1,170 1,526,794,320

Sum 2,748,566,671

F3.2 CO2 Emissions Avoided due to ABC Installation

We first calculate the proportion of generation attributed to each of the fuels potentially
responding to the changes in demand. First, we assume that the marginal units purchased
are from the KE generation basket, not CPPA-G. Further, we assume that the fossil fuel
(natural gas/RFO/coal) generation in the KE generation responds to the changes in de-
mand and that this response is proportional to their generation mix. It is reasonable to
assume that nuclear power and renewables do not respond to changes in demand. Hy-
dropower could be the marginal responder, but it is very unlikely; the zero marginal cost
of hydropower makes it much cheaper than oil, coal, or gas generation.

Based on these assumptions, we calculate the proportion of responding generation
that is contributed by each of these fossil fuels:

Natural gas: (17.9 + 31.8)/(17.9 + 31.8 + 10.6 + 28.0) = 49.8/88.3 = 56% (A1)

RFO: 10.6/88.3 = 12% (A2)

Coal: 28.0/88.3 = 32% (A3)

We then deploy the average emissions intensity for each of the fossil fuel sources, as
shown in Table F2.

To calculate a blended estimate of the reduction in CO2 per kWh reduction of elec-
tricity services consumed, we assume that the marginal generators are proportional to the
generation from oil, coal, and gas and weight these according to the proportion that each
fuel contributes to the generation mix, as follows:

= (460 × 56%) + (1, 060 × 12%) + (1, 170 × 32%) (A4)

= 760 kgCO2/MWh (A5)

= 0.76 kgCO2/kWh. (A6)
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This calculation provides our basic estimation of the reduction in CO2 per kWh reduction
of electricity services consumed: 0.76 kg CO2/kWh.

There are some caveats to this calculation. As mentioned above, we assume that
plants generating electricity from fossil fuels respond. If hydro generation responds,
the emissions would be lower. This calculation also ignores upstream fuel effects, like
methane leakage, which would make the result higher if included. Further, it is possible
that the generation response is not proportional across the fossil fuels.

To provide upper- and lower-bound estimates of the reduction in CO2 per kWh re-
duction of electricity services consumed, we can alternatively assume that the marginal
generation is either strictly natural gas (the least carbon intensive of the three fuels) or
RFO (the most carbon intensive of the three fuels). This provides us with the range of
estimates in Table F6.

Table F6: Change in CO2 Emissions per Change in Electricity Generated, by Fuel

Fuel(s) Change in CO2 per Generation Change
(kg CO2 /kWh)

Natural Gas 0.46
Blended Generation Fuels 0.76
RFO 1.06
Coal 1.17

Notes: We use these numbers in our calculations in Section F of the paper.

We use these calculations to estimate the change in the CO2 emissions from electricity
generated, depending on which of these fuels is the marginal fuel: natural gas, residual
fuel oil, coal, or the responsive blend calculated earlier. We present these calculations in
Table F8.

We know from Table F7 that the change in the quantity sent out per feed line as a
result of the ABC intervention is -97,213 kWh per month. We multiply that amount by
the change in the CO2 per kWh generated via each fuel, and convert to metric tons of
CO2 per feeder-line per year. To aggregate these avoided CO2 emissions up, we multiply
the per feeder-line numbers by either the 398 high loss feeder-lines in Karachi (our con-
servative estimate) or the 2000 total feeder-lines in Karachi (an upper bound estimate),
providing us with two estimates of the aggregates tons per year in avoided CO2 emis-
sions in Karachi, as a result of the intervention. Lastly, we compare these reductions to
the overall emissions that are from the electricity units purchased by Karachi Electric, as
calculated above in Section F3.1.

We see in Table F8 that the reduction in CO2 emissions resulting from the approxi-
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mately 400 high-loss feeder-lines being converted to ABCs, would result in a reduction of
CO2 emissions somewhere between 1.67% and 4.26% of the emissions due to electricity
generated for KE.
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Table F7: Effect of Theft-resistant Cables on Electricity Sent
Out

Quantity Sent Out
(kWh per month)

Level IHS
(1) (2)

ABC −97,213.292*** −0.102***
(18,433.656) (0.023)

Outcome Mean Level 921,096 921,096
Observations 47,575 47,575
Feeder-line FE ✓ ✓
IBC-Month FE ✓ ✓

Notes: Data are at the feeder-line level. ABC is a binary indicator that
equals 1 when the feeder-line has transformers with ABC installed, and
equals zero otherwise. All regressions include feeder-line and IBC-by-
month fixed effects. Standard errors in parentheses are clustered at the
feeder-line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table F8: Change in CO2 Emissions per Change in Electricity Generated

Aggregated: High-Loss Feeders

∆ in CO2 ∆ in CO2 ∆ in CO2 % of KE’s
(t CO2) / Emissions Emissions Annual CO2

∆ Generation per Feeder per Year Emissions
(MWh) (tons) (tons) from Generation

Generation Fuel(s) (1) (2) (3) (4)

Natural Gas −0.46 −536.6 −213,574 1.67%
Responsive Blend −0.76 −886.6 −352,861 2.77%
RFO −1.06 −1,236.6 −492,148 3.86%
Coal −1.17 −1,364.9 −543,190 4.26%

Notes: The steps leading to these results are detailed in Appendix F3. Column 1 is based on the num-
bers reported in Table F6. Column 2 is calculated by multiplying the values in column 1 by −97,213
kWh per month, which is the reduction estimated in Table F7 as the reduction in quantity sent out to a
feeder-line per month as a result of the ABC installation. Column 3 is calculated by multiplying column
2 by 398, based on the utility’s 398 high-loss feeder-lines. Column 4 is calculated by dividing column 3
by 12,754,639 tons of CO2, which was our estimate for the total CO2 emissions for generating the units
of electricity (kWh) that KE purchased per year.
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Table F9: Change in CO2 Emissions per Change in Electricity Generated, by
Generation Fuel

Aggregated: High-Loss Feeders

∆ in CO2 ∆ in CO2 ∆ in CO2 % of KE’s
(t CO2) / Emissions Emissions Annual CO2

∆ Generation per Feeder per Year Emissions
(MWh) (tons) (tons) from Generation

Generation Fuel(s) (1) (2) (3) (4)

Natural Gas −0.46 −536.6 −213,574 1.67%
Responsive Blend −0.76 −886.6 −352,861 2.77%
RFO −1.06 −1,236.6 −492,148 3.86%
Coal −1.17 −1,364.9 −543,190 4.26%

Notes: Column 1 is based on the numbers reported in Table F6. Column 2 is calculated by multiplying
the values in column 1 by −97,213 kWh per month, which is the reduction estimated in Table F7 as the
reduction in quantity sent out to a feeder-line per month as a result of the ABC installation. Column 3
is calculated by multiplying column 2 by 398, based on the utility’s 398 high-loss feeders. Column 4 is
calculated by dividing column 3 by 12,754,639 tons of CO2, which was our estimate for the total CO2
emissions for generating the KE units of electricity purchased per year (see end of Section F3).

Table F10: Scenarios of Expected Household Reductions in Monthly Electricity
Bill, by Season

Winter Spring/Fall Summer

(a) kW Reduction per Household 0.27 0.27 0.27
(b) Average Hours of Bulb Use per Day 5.5 4.5 3
(c) Days in Month 30 30 30

Expected LED Savings per Month (kWh) 44.55 36.45 24.30
= a × b × c

Notes: Average hours per day are based on differences in sunrise and sunsets across seasons.
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